Microbial Count and AvBD10 Expressions in Ovaries and Oviducts of Kampung Unggul Balitbangtan (KUB)-1 Chickens Following Intravaginally CpG-ODN and S. Enteritidis
Raden Rara Bhintarti Suryohastari(1), Sony Heru Sumarsono(2*), Ernawati Arifin Giri-rachman(3), Suryo Purnomo Edi(4), Rinto Sukoco(5), Dwi Nawang Wicaksana(6)
(1) School of Life Sciences and Technology, Institut Teknologi Bandung, 10 Ganesha Street, Bandung 40132, West Java, Indonesia; Department of Biology, Faculty of Sciences and Technology, Universitas Islam Negeri Syarif Hidayatullah Jakarta, 95 Ir. H. Juanda Street, Ciputat, South Tangerang, 15412, Banten, Indonesia.
(2) School of Life Sciences and Technology, Institut Teknologi Bandung, 10 Ganesha Street, Bandung 40132, West Java, Indonesia.
(3) School of Life Sciences and Technology, Institut Teknologi Bandung, 10 Ganesha Street, Bandung 40132, West Java, Indonesia.
(4) Balai Veteriner Subang, Terusan Garuda Street, West Java, Indonesia.
(5) Balai Veteriner Subang, Terusan Garuda Street, West Java, Indonesia.
(6) Balai Veteriner Subang, Terusan Garuda Street, West Java, Indonesia.
(*) Corresponding Author
Abstract
Indonesia boasts diverse native chickens (Gallus gallus domesticus) known for more disease resistance in comparison to broiler chicken, and Kampung Unggul Balitbangtan (KUB)-1 is designated as Indonesia's superior breed. Salmonella Enteritidis (SE) is associated with salmonellosis, a foodborne illness that can be transmitted by transovarial, wherein colonisation in the oviduct ascends to the ovaries. However, studies mimicking transovarial salmonellosis via intravaginal treatment of chicken have been limited. Meanwhile, Cytosine-phosphate-guanine oligodeoxynucleotide (CpG-ODN) stimulation has been known to induce avian β-defensins (AvBDs). This in vivo study aimed to determine the effects of intravaginal CpG-ODN treatment and SE challenged on microbial count and AvBD10 expression regarding the potential of intravaginally CpG-ODN to enhance innate immunity as an alternative approach against transovarial Salmonellosis. A total of 39 KUB-1 chickens were divided into four groups: T1 (CpG-ODN treatment), T2 (SE treatment), T3 (CpG-ODN treatment + challenged with SE), and C (Control). Observation was carried out from day 1 to day 4 post-intravaginal (PI). We found a significant increase in ovarian microbial count (p≤0.05). Notably, ovaries and oviducts remained uncontaminated post-SE challenge. Intravaginal CpG-ODN treatment significantly upregulated AvBD10 in both ovaries (p=0.016) and oviducts (p=0.023). Therefore, KUB-1 chickens exhibit SE immunity, and intravaginal CpG-ODN administration holds promise for preventing transovarial Salmonellosis in laying hens.
Keywords
Full Text:
PDFReferences
Abdel-Mageed, A.M, Isobe, N. & Yoshimura, Y., 2011. Changes in the density of immunoreactive avian β-defensin-3 and-11 in the hen uterus in response to lipopolysaccharide inoculation. Poult Sci J., 48(1), pp.73–77. doi:10.2141/jpsa.010058.
Abdel-Mageed, A.M., Isobe, N. & Yoshimura Y., 2014. Effects of different TLR ligands on the expression of proinflammatory cytokines and avian β-defensins in the uterus and vaginal tissues of laying hens. Vet Immunol Immunopathol., 162(2-4), pp.132–141. doi:10.1016/j.vetimm.2014.10.013.
Ahmed, A.K.M. et al., 2010. Seroprevalence and pathology of naturally infected Salmonellosis in poultry with isolation and identification of causal agents. J.Bangladesh Agril. Univ., 6 (2), pp.327-334. doi:10.3329/jbau.v6i2.4830.
Anastasiadou, M., Avdi, M. & Theodoridis, A., 2013. Temporal changes in the expression of avian β-defensins in the chicken vagina during sexual maturation and Salmonella infection. Vet Res Commun., 37(2), pp.115–122. doi:10.1007/s11259-013-9553-2.
Antunes, P. et al., 2016. Salmonellosis: The role of poultry meat. Clin Microbiol Infect., 22(2), pp.110-121. doi: 10.1016/j.cmi.2015.12.004.
Bultman, SJ., 2017. The interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food es., 61(1), p.1. doi: 10.1002/mnfr.201500902.
Canchignia, H. et al., 2016. Candidate nematicidal proteins in a new Pseudomonas veronii isolate identified by its antagonistic properties against Xiphinema index. J Gen Appl Microbiol., 63(1), pp.11–21. doi: 10.2323/jgam.2016.07.001.
CDC. https://www.cdc.gov/salmonella/index.html, accessed October 26, 2023
Chatterjee, A. & Abraham, J., 2018. Microbial Contamination, prevention, and early detection in food industry, In Handbook of Food Bioengineering, Microbial Contamination and Food Degradation, Academic Press. 21-47 pp.
Ding, J. et al., 2017. Inheritance and Establishment of Gut Microbiota in Chickens. Front Microbiol. 8: 1967. doi: 10.3389/fmicb.2017.01967.
Ebers, K.L. et al., 2009. Transcriptional profiling avian beta-defensins in chicken oviduct epithelial cells before and after infection with Salmonella enterica serovar Enteritidis. BMC Microbiol., 9(1), p.153. doi:10.1186/1471-2180-9-153.
El-Saadony, M.T. et al., 2022. The control of poultry salmonellosis using organic agents: an updated overview. Poult Sci., 101(4), p.101716. doi: 10.1016/j.psj.2022.101716.
Foley, S.L. et al., 2013. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev., 77(4), pp.582–607. doi: 10.1128/MMBR.00015-13.
Gong, B. et al., 2022. Prevalence, serotype distribution and antimicrobial resistance of Non-Typhoidal Salmonella in hospitalized patients in Conghua district of Guangzhou, China. Front Cell Infect Microbiol., 12: 805384. doi: 10.3389/fcimb.2022.805384.
Gantois, I. et al., 2008. A comparative study on the pathogenesis of egg contamination by different serotypes of Salmonella. Avian Pathol., 37(4), pp.399–406. doi: 10.1080/03079450802216611.
Grzymajlo K., 2022. The game for three: Salmonella-host-microbiota interaction models. Front Microbiol., 13, 854112. doi: 10.3389/fmicb.2022.854112.
Hawal, R.G. & Bakr, M.T., 2022. The effect of Salmonella Pullorum on broiler chicken in Iraq. Texas J agric biol sci., 8, pp.59–67. https://zienjournals.com/index.php/tjabs/article/view/2303 (doi not available)
Kaspers, B., Schat, K.A. & Kaiser, P., 2014. The mucosal immune system in avian immunology, Second ed. Academic Press, 223–225 pp.
Kogut, M.H. & Arsenault, R.J., 2017. Immunometabolic phenotype alterations associated with the induction of disease tolerance and persistent asymptomatic infection of Salmonella in the chicken intestine. Front Immunol., 8, p.372. doi: 10.3389/fimmu.2017.00372.
Lee, S. et al., 2019. Characterization of microbial communities in the chicken oviduct and the origin of chicken embryo gut microbiota. Sci Rep., 9(1), pp.1–11. 6838. doi: 10.1038/s41598-019-43280-w.
Li, R. et al., 2017. Immunological effects of different types of synthetic CpG oligodeoxynucleotides on porcine cells, RSC Adv., 7: 43289. doi:10.1039/C7RA04493C.
Li, L.L. et al., 2023. Effects of salpingitis simulation on the morphology and expression of inflammatory-related genes of oviduct in laying hens. Poult Sci. 102(1):102246. doi: 10.1016/j.psj.2022.102246.
Livak, K.J. & Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods., 25(4), pp.402–408. doi: 10.1006/meth.2001.1262.
Lopez, M.E.S. et al., 2018. Microbial contamination and food degradation. Academic Press, 49-84 pp.
Michailidis, G., Avdi, M. & Argiriou, A., 2012. Transcriptional profiling of antimicrobial peptides avian b-defensins in the chicken ovary during sexual maturation and in response to Salmonella Enteritidis infection. Res in Vet Sci., 92(1), pp.60–65. doi: 10.1016/j.rvsc.2010.10.010.
Midorikawa, Y. et al., 2020. Symbiosis of Salmonella and Escherichia coli by MY Phenomenon. Open J Med Microbiol., 10(1), pp.17–25. doi:10.4236/ojmm.2020.101002.
Miyamoto, T. et al., 1998. Changes in microflora of the cloaca and oviduct of hens after intracloacal or intravaginal inoculation with Salmonella Enteritidis. Avian Dis., 3(2), pp.536–544. doi: 10.2307/1592680.
Mon, K.K.Z. et al., 2015. Salmonella enterica serovars Enteritidis infection alters the indigenous microbiota diversity in young layer chicks. Front Vet Sci., 2, p.61. doi: 10.3389/fvets.2015.00061.
Montes, C. et al., 2016. A draft genome sequence of Pseudomonas veronii R4: a grapevine (Vitis vinifera L.) root-associated strain with high biocontrol potential. Stand Genom Sci., 11, p.76. doi: 10.1186/s40793-016-0198-y.
Mpundu, P. et al., 2019. Evaluation of bacterial contamination in dressed chickens in Lusaka abattoirs. Front Public Health., 7, p.19. doi: 10.3389/fpubh.2019.00019.
OIE World Organization for Animal Health. 2018. OIE terrestrial manual, Salmonellosis, Chapter 3.9.8.
Ojima, S. et al., 2021. Characteristics of systemic infection and host responses in chickens experimentally infected with Salmonella enterica serovar Gallinarum biovar Gallinarum. J Vet Med Sci., 83(7), pp.1147–1154. doi: 10.1292/jvms.21-0227.
Okamura, M. et al., 2001. Differences among six Salmonella serovars in abilities to colonize reproductive organs and to contaminate eggs in laying hens. Avian Dis., 45(1).pp. 61–69.
Oludairo, O.O. et al., 2022. A review on Salmonella characteristics, taxonomy, nomenclature with special reference to non-Typhoidal and Typhoidal salmonellosis. Zagazig Vet. J., 50, pp.160–171. doi: 10.21608/zvjz.2022.137946.1179.
Pudjiatmoko et al., 2014. Manual Penyakit Unggas. Direktorat Jenderal Peternakan dan Kesehatan Hewan Kementerian Pertanian, Jakarta, Indonesia. (doi not available).
Pulido-Landínez, M., 2019. Food safety - Salmonella update in broilers. Anim. Feed Sci. Technol., 250, pp.53–58. doi: 10.1016/j.anifeedsci.2019.01.008.
Rehman, M.S. et al., 2021. The potential of Toll-like receptors to modulate avian immune system: exploring the effects of genetic variants and phytonutrients. Front Genet., 12, p.671235. doi: 10.3389/fgene.2021.671235.
Rieu, I., & Powers, S.J., 2009. Real-time quantitative RT-PCR: design, calculations, and statistics. Plant Cell, 21(4), pp. 1031–1033. doi: 10.1105/tpc.109.066001.
Rogers, A.W.L., Tsolis, R.M., & Bäumler, A.J., 2021. Salmonella versus the microbiome. Microbiol. Mol. Biol. Rev., 85:e00027-19. doi: 10.1128/mmbr.00027-19.
Rusek, P. et al., 2018. Infectious Agents as stimuli of trained innate immunity. Int J Mol Sci., 19(2), p.456. doi: 10.3390/ijms19020456.
Sartika, T., 2014. Genotyping of Mx gene using SNP analysis 7500 Fast Real-Time PCR of KUB chicken, Proceedings of the National seminar on livestock production and veterinary technology, Indonesia. pp. 546–553.
Sartika, T., & Iskandar, S., 2019. The productivity of 4th Generation KUB-2 Chicken. JITV., 24(4), pp.151–157. doi: 10.14334/jitv.v24i4.2033.
Sonoda, Y. et al., 2013. Induction of avian b-defensins by CpG oligodeoxynucleotides and proinflammatory cytokines in hen vaginal cells in vitro. Reproduction, 145(6), pp.621–631. doi: 10.1530/REP-12-0518.
Van der Meer, J.W.M. et al., 2015. Trained immunity: A smart way to enhance innate immune defense. Mol Immunol., 68(1), pp.40–44. doi: 10.1016/j.molimm.2015.06.019.
Walyani, S., Purnawarman, T., & Sudarnika, E., 2019. Prevalence of Salmonella spp. bacteria antibiotic resistency indigestion tract in the broiler farms of Subang district. Buletin Peternakan. p43. doi: 10.21059/buletinpeternak.v43i1.41010.
Wardhana, D.K. et al., 2021. Detection of microbial contamination in chicken meat from local markets in Surabaya, East Java, Indonesia. Vet World, 14(12), pp.3138–3143. doi: 10.14202/vetworld.2021.3138-3143.
Wessels, K., Rip, D. & Gouws, P., 2021. Salmonella in chicken meat: consumption, outbreaks, characteristics, current control methods and the potential of bacteriophage use. Foods, 10(8), p.1742. doi: 10.3390/foods10081742.
Wigley, P., 2014. Salmonella enterica in the chicken: how it has helped our understanding of immunology in a non-biomedical model species. Front Immunol., 5, p.482. doi: 10.3389/fimmu.2014.00482.
Yoshimura, Y. et al., 2014. Innate immune functions in hen reproductive organs. Avian Biol Res., 7(1), pp.39–47. doi:10.3184/175815514X13902927945697.
Yoshimura, Y., 2015. Avian β-defensins expression for the innate immune system in hen reproductive organs, Poult Sci J., 94(4), pp.804–809. doi: 10.3382/ps/peu021.
Yulistiani, R. et al., 2019. Occurrences of Salmonella spp. and Escherichia coli in chicken meat, intestinal contents and rinse water at slaughtering place from traditional market in Surabaya, Indonesia. IOP Publishing. 633, p. 012007.
DOI: https://doi.org/10.22146/jtbb.88750
Article Metrics
Abstract views : 1340 | views : 1039Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)