Spatial Distribution of Cedrela Odorata Smaller Trees Affects Forest Regeneration in Exotic Tree Plantations in Central Côte d’Ivoire
Bi Tra Aimé Vroh(1*), Abdoulaye Koné(2)
(1) UFR Biosciences, University Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
(2) Centre d'Excellence Africain sur Changement Climatique, Biodiversité et Agriculture Durable, University Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
(*) Corresponding Author
Abstract
Cedrela odorata L. was introduced as a possible forest restauration species in classified forests at Côte d’Ivoire. Because of its demonstrated invasive behavior in other tropical forests, this study aimed to assess the impact of Cedrela odorata on the regeneration of spontaneous plant species in tree plantations. On the base of Cedrela odorata larger tree densities, two types of forest plantation were considered: Type I (240 stems/ha) and Type II (176 stems/ha). In these plantations, plots with 0.25 ha were chosen to locate each tree with dbh ≥ 2.5 cm, in an orthonormal reference. The tree density, the basal area, the species richness, the Shannon diversity index and the rank-abundance curves were determined considering smaller and larger trees. The horizontal spatial arrangement and Ripley’s K function were performed to understand the spatial relationship between Cedrela odorata smaller trees and those of spontaneous species. The results shown lower spontaneous plant species richness (15-20 species) and diversity (1.15 - 1.43); the dominance of Cedrela odorata smaller trees (43.02 – 62.95 % of all stems). The Cedrela odorata smaller trees and those of other species have dependent spatial distributions; expressed by a spatial repulsion between the two groups up to a distance of 18 m in the most densified forest plantation. This repulsion was related to an aggregated distribution of Cedrela odorata smaller trees in plantation with higher tree density. The study suggests a 170-stems/ha (or lower) of Cedrela odorata planting density for biodiversity establishment improvement outcomes in forest plantations.
Keywords
Full Text:
PDFReferences
Abdourhamane, H. et al., 2017. Structure démographique et répartition spatiale des populations de Sclerocarya birrea du secteur sahélien du Niger. Bois et Forêts Des Tropiques, 333(3), pp.55-66 doi: 10.19182/bft2017.333.a31468
Adomou, C.A. et al., 2018. Analyse des connaissances traditionnelles et des déterminants relatifs à l’utilisation de Newbouldia laevis (PBeauv) Seemann ex Bureau (Bignoniaceae) au Sud-Bénin. Afrique SCIENCE, 14(1), pp.194-205.
Avalos, G., 2019. Shade tolerance within the context of the successional process in tropical rain forests. Revista de Biología Tropical, 67(2), pp .53-77. doi: 10.15517/rbt.v67i2supl.37206
Battles, J.J. et al., 2001. The effects of forest management on plant species diversity in a Sierran conifer forest. For Ecol. Manag., 146, pp.211–222
Besag, J., 1977. Contribution to the discussion of Dr. Ripley's paper. J R Stat Soc B, 39, pp.193–195
Boose, E.R., Boose, E.R. & Lezberg, A. 1998. A practical method for mapping trees using distance measurements. Ecology, 79(3), pp.819-827.
Carnus, J.M., Parrotta, J. & Brockerhoff, E., 2006. Planted forests and biodiversity. Journal of Foretry Research, 104, pp.65–77.
Cintron, B.B., 1990. Cedrela odorata L. Cedro, Spanish Cedar. In Silvics of North America: 2. Hardwoods. Washington DC: Agriculture Handbook 654, Department of Agriculture, Forest Service. pp.128-134.
Dajoz, R., 2003. Précis d’écologie. Paris, France.
der Meersch, V.V. et al., 2020. Causes and consequences of Cedrela odorata invasion in West African semi-deciduous tropical forests. Biological Invasions, 23, pp.537-552. doi: 10.1007/s10530-020-02381-8
Diggle, J.P., 1983. Statistical analysis of spatial point patterns. Applications to Economical, Biomedical and Ecological Data. New York, USA: Academic Press.
Dyderski, M.K. & Jagodziński, A.M., 2020. Impact of invasive tree species on natural regeneration species composition, diversity, and density. Forests, 11(4), 456. doi: 10.3390/F11040456
Eblin, M.O. & Amani, Y.C., 2015. Déforestation et politique de reboisement dans les forêts classées : cas de la forêt de la Téné (Centre-ouest de la Côte d’Ivoire). European Scientific Journal, 11(26), pp.110-127.
Fonton, N.H. et al., 2011. Plot size for modelling the spatial structure of Sudanian woodland trees. Annals of Forest Science, 68, pp.1315–1321. doi: 10.1007/s13595-011-0111-1
Global Invasive Species Database GISD, 2015, ‘Species profile Cedrela odorata’, in IUCN GISD Database, viewed 28 February 2021, from http://www.iucngisd.org/gisd/species.
Goldman, R.L., Goldstein, L.P. & Daily, G.C., 2008. Assessing the conservation value of a human-dominated island landscape: plant diversity in Hawaii. Biodivers Conserv., 17, pp.1765–1781
Goreaud, F. & Pélissier, R. 2003. Avoiding misinterpretation of biotic interactions with the intertype K12-function: population independence vs. random labelling hypotheses. J Veg Sci, 14, pp.681–692
Haase, P. et al., 1996. Spatial patterns in two-tiered semiarid shrubland in southeastern Spain. J. Veg. Sci., 7, pp.527-534.
Havyarimana, F. et al., 2013. Impact de la structure spatiale de Strombosia scheffleri Engl. et Xymalos monospora (Harv.) Baill. sur la régénération naturelle et la coexistence des espèces arborescentes dans la réserve naturelle forestière de Bururi, Burundi. Bois et Forêt des Tropiques, 316(2), pp.49-61. doi: 10.19182/bft2013.316.a20530
He, F. & Duncan, R.P., 2000. Density-dependent effects on tree survival in an old-growth Douglas fir forest. J Ecol, 88, pp.676–688
Herault, B., Bouxin, G. & Thoen, D., 2004. Comparison of the regeneration patterns of woody species between Norway spruce plantations and deciduous forests on alluvial soils. Belg J Bot, 137, pp.36–46
Kiêu, K. & Mora, M., 1999. Estimating the reduced moments of a random measure. Adv App Prob, 31, pp.48 –62
Kilawe; C.J., Mchelu, H.A. & Emily, C.J., 2022. The impact of the invasive tree Cedrela odorota on the Electric Blue Gecko (Lygodactylus williamsi) and its habitat (Pandanus rabaiensis) in Kimboza Forest Reserve, Tanzania. Global Ecology and Conservation, 38, e02225. doi: 10.1016/j.gecco.2022.e02225
Kindt, R. & Coe, R., 2005. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. Nairobi: World Agroforestry Centre (ICRAF).
Kone, Y. & Vroh, B.T.A., 2021. Diversité de la régénération des ligneux dans les plantations forestières au centre de la Côte d’Ivoire. Biotechnol. Agron. Soc. Environ., 25(4), pp.253-266
Le Maître, D.C. et al., 2011. Impacts of invasive Australian acacias: implications for management and restoration. Diversity and Distributions, 17(5), pp.1015-1029. doi: 10.1111/j.1472-4642.2011.00816.x
Lemenih, M. & Teketay, D., 2005. Effect of prior land use on the recolonization of native woody species under plantation forests in the highlands of Ethiopia. For Ecol Manag, 218, pp.60–73
Lemmens, R.H.M.J., 2008. Cedrela odorata L. In PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale). Wageningen, Netherlands: PROTA Network Office Europe, Wageningen University, pp. 103-134
Marcon, E., 2019. Mesure de la biodiversité et de la structuration spatiale de l’activité économique par l’entropie. Revue économique, 70(3), pp.305-326
Marcon, E., 2018. Mesures de la Biodiversité. Kourou, France: Master, UMR Écologie des forêts de Guyane (ECOFOG).
Meyer, S.E. et al., 2021. Invasive Species Response to Natural and Anthropogenic Disturbance. In Invasive Species in Forests and Rangelands of the United States. Springer, Cham. doi: 10.1007/978-3-030-45367-1_5
Muellner, A.N. et al., 2010. Biogeography of Cedrela (Meliaceae, Sapindales) in Central and South America. American Journal of Botany, 97(3), pp.511-518.
Nicotra, A.B., 1998. Sex ratio variation and spatial distribution of Siparuna grandiflora, a dioecious shrub. Œcologia, 115, pp.102-113.
Pasiecznik, N., 2008. Cedrela odorata (Spanish cedar). CABI Compendium. doi: 10.1079/cabicompendium.11975
Pearson, D.E. et al., 2018. Community assembly theory as a framework for biological invasions. Trends Ecol. Evol., 33(5), pp.313-325. doi: 10.1016/j.tree.2018.03.002
Picard, N. & Gourlet-Fleury, S., 2008. Manuel de référence pour l’installation de dispositifs permanents en forêt de production dans le Bassin du Congo. Commission des Forêts d’Afrique Centrale (COMIFAC).
Ripley, B.D., 1977. Modelling spatial patterns. Journal of the Royal Statistical Society B, 39, pp.172-212.
Ripley, B.D., 1981. Spatial statistics. New York, USA: Wiley. doi: 10.1002/0471725218
Sangne, Y.C., 2009. Dynamique du couvert forestier d’une aire protégée soumise aux pressions anthropiques : cas de la forêt classée de Téné dans le département d’Oumé (Centre-ouest de la côte d’ivoire). Université Félix Houphouët-Boigny, Abidjan.
Stoll, P. & Bergius, E., 2005. Pattern and process: competition causes regular spacing of individuals within plant populations. J Ecol, 93, pp.395–403
Thammanu, S., Marod, D. & Han, H., 2021. The influence of environmental factors on species composition and distribution in a community forest in Northern Thailand. J. For. Res., 32, pp.649–662. doi: 10.1007/s11676-020-01239-y
Vroh, B.T.A., Koné, Y. & Djongmo, A.V., 2022. Plant species diversity and structure in tree plantations at Téné Protected Forest (Côte d’Ivoire). Annals of Silvicultural Research, 47(1), pp.39–47
Wiegand, T. & Moloney, K.A., 2004. Rings, circles and null-models for point pattern analysis in ecology. Oikos, 104, pp.209-229
DOI: https://doi.org/10.22146/jtbb.84322
Article Metrics
Abstract views : 591 | views : 431Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)