Cobalamin and Thiamine Effect on Microalgae Biomass Production in the Glagah Consortium

https://doi.org/10.22146/jtbb.81949

Tri Wahyu Setyaningrum(1), Arief Budiman(2), Eko Agus Suyono(3*)

(1) Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; Department of Biology, Faculty of Mathematics and Natural Science, Universitas Mataram
(2) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; Center for Energy Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(3) Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; Center for Energy Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


The Glagah consortium is a mixed culture of various microalgae and bacteria isolated from Glagah Beach, Yogyakarta. Cobalamin and thiamine, which are given by symbiotic bacteria, are assumed will increase biomass. This study aimed to determine the effect of cobalamin and thiamine on microalgae biomass production in the Glagah consortium. The microalgae of Glagah consortium were cultivated for 10 days with vancomycin and gentamicin antibiotic as treatment and without antibiotics as a control. The parameters measured included the number of bacterial colonies, cobalamin and thiamine levels measured by LC-MS, chlorophyll a and b levels, cell density of microalgae and dry biomass. The highest level of cobalamin and thiamine was in the Glagah consortium without antibiotics. Cobalamin and thiamine increased in the exponential phase along with the increasing Staphylococcus sp. colonies. The Quantity of Staphylococcus sp. colonies in the exponential phase was 62.105 (cfu/mL). The level of cobalamin in the exponential phase was 2.33 µg/L and the level of thiamine in the exponential phase was 49.71 µg/L. The highest productivity dried weight biomass was 0.0134 g/L/day in the day-6th on the Glagah consortium without antibiotics. This result showed that microalgae and bacterial interaction was mutualism symbiosis involving cobalamin and thiamine that increased in the exponential phase along with the increasing Staphylococcus sp. colonies. This interaction was able to increase biomass microalgae.


Keywords


biomass, cobalamin; microalgae-bacteria interaction; thiamin

Full Text:

PDF


References

Amin, S.A. et al., 2015. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature, 522, pp.98–101. doi: 10.1038/nature14488.

Cheng, J. et al., 2016. Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress. Bioresource Technology, 204(2016), pp.49–54. doi: 10.1016/j.biortech.2015.12.076

Cheng, Z., Yamamoto, H. & Bauer, C.E., 2016. Cobalamin’s (Vitamin B12) Surprising Function as a Photoreceptor. Trends Biochem. Sci., 41(8), pp.647-650. doi: 10.1016/j.tibs.2016.05.002.

Cooper, M.B. & Smith, A.G., 2015. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr. Opin. Plant Biol., 26, pp.147–153. doi: 10.1016/j.pbi.2015.07.003.

Croft, M.T., Warren, M.J. & Smith, A.G., 2006. Algae need their vitamins. Eukaryot. Cell, 5, pp.1175–1183. doi: 10.1128/EC.00097-06.

Foster, R.A. et al., 2011. Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. The ISME Journal, 5, pp.1484–1493. doi: 10.1038/ismej.2011.26.

Grenni, P., Ancona, V. & Barra Caracciolo, A., 2018. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J., 136, pp.25–39. doi: 10.1016/j.microc.2017.02.006.

Jiang, L. et al., 2007. Quantitative studies on phosphorus transference occuring between Microcystis aeruginosa and its attached bacterium (Pseudomonas sp.). Hydrobiologia, 581, pp.161–165. doi: 10.1007/s10750-006-0518-0.

Kazamia, E. et al., 2012. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol., 14, pp.1466–1476. doi: 10.1111/j.1462-2920.2012.02733.x.

Konopka, A., Lindemann, S. & Fredrickson, J., 2015. Dynamics in microbial communities: Unraveling mechanisms to identify principles. The ISME Journal, 9, pp.1488–1495. doi: 10.1038/ismej.2014.251.

Leisico, F. et al., 2018. First insights of peptidoglycan amidation in Gram-positive bacteria - the high-resolution crystal structure of Staphylococcus aureus glutamine amidotransferase GatD. Scientific Reports, 5, 5313. doi: 10.1038/s41598-018-22986-3.

Li, D. et al., 2011. Bacterial community characteristics under long-term antibiotic selection pressures. Water Res., 45(18), pp.6063–6073. doi: 10.1016/j.watres.2011.09.002.

Matsui, K., Ishii, N. & Kawabata, Z., 2003. Release of extracellular transformable plasmid DNA from Escherichia coli cocultivated with algae. Appl. Environ. Microbiol., 69, pp.2399–2404. doi: 10.1128/AEM.69.4.2399-2404.2003.

Moulin, M. et al., 2013. Analysis of Chlamydomonas thiamin metabolism in vivo reveals riboswitch plasticity. Proc. Natl. Acad. Sci. U. S. A., 110(36), pp.14622–14627. doi: 10.1073/pnas.1307741110.

Müller, I.B. et al., 2009. The Vitamin B1 Metabolism of Staphylococcus aureus Is Controlled at Enzymatic and Transcriptional Levels 4. PLoS One, 4(11), e7656. doi: 10.1371/journal.pone.0007656.

Rosnow, J.J. et al., 2018. A cobalamin activity-based probe enables microbial cell growth and finds new cobalamin-protein interactions across domains. Appl. Environ. Microbiol., 84(18), e00955. doi: 10.1128/AEM.00955-18.

Suyono, E.A., Retnaningrum, E. & Ajijah, N., 2018. Bacterial symbionts isolated from mixed microalgae culture of Glagah strains. Int. J. Agric. Biol., 20(1), pp.33–36. doi: 10.17957/IJAB/15.0326.

Voitsekhovskaja, O. V. & Tyutereva, E. V., 2015. Chlorophyll b in angiosperms: Functions in photosynthesis, signaling and ontogenetic regulation. J. Plant Physiol., 189, pp.51–64. doi: 10.1016/j.jplph.2015.09.013.

Wang, H. et al., 2016. Effects of bacterial communities on biofuel-producing microalgae: Stimulation, inhibition and harvesting. Crit. Rev. Biotechnol, 36(2), pp.341–352. doi: 10.3109/07388551.2014.961402.

Warren, M.J. et al., 2002. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep., 19(4), pp.390–412. doi: 10.1039/b108967f.

Whitehead, T.R. et al., 2008. Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen Clostridium drakei, Clostridium scatologenes, and swine manure. Appl. Environ. Microbiol., 74(6), pp.1950–1953. doi: 10.1128/AEM.02458-07.



DOI: https://doi.org/10.22146/jtbb.81949

Article Metrics

Abstract views : 861 | views : 418

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)