Nutritional Contents and Bioactive Compounds among Several Variants of Dolichos lablab: Fundamental Facts for Functional Food Development

https://doi.org/10.22146/jtbb.81339

Elly Purwanti(1*), Feri Eko Hermanto(2), Wahyu Prihanta(3), Tutut Indria Permana(4), I Gusti Ngurah Agung Wiwekananda(5)

(1) Department of Educational Biology, Faculty of Teacher Training and Education, University of Muhammadiyah Malang, Malang 65144, East Java, Indonesia
(2) Faculty of Animal Sciences, Universitas Brawijaya, Malang 65145, East Java, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang 65162, East Java, Indonesia
(3) Department of Educational Biology, Faculty of Teacher Training and Education, University of Muhammadiyah Malang, Malang 65144, East Java, Indonesia
(4) Department of Educational Biology, Faculty of Teacher Training and Education, University of Muhammadiyah Malang, Malang 65144, East Java, Indonesia
(5) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, East Java, Indonesia
(*) Corresponding Author

Abstract


To date, the data describing various nutritional and secondary metabolites content of Lablab beans is incomplete. Therefore, this study evaluated the nutritional value, secondary metabolites, and antioxidant activity of three different variants of Lablab beans, i.e., brown, black, and cream beans. The results showed that the brown Lablab beans had outperformed other variants according to their nutritional value and flavonoid content with outstanding DPPH scavenging activity. However, the black beans also showed good bioactive contents through their total phenolic percentage with decent reducing activity via the FRAP assay. Those who are keen in developing functional food from Lablab beans should consider this data as a reference.

 


Keywords


Antioxidant; Dolichos lablab; functional food; nutritional value; secondary metabolites

Full Text:

PDF


References

An, J.M. et al., 2020. Dolichos lablab L. extracts as pharmanutrient for stress-related mucosal disease in rat stomach. Journal of Clinical Biochemistry and Nutrition, 67(1), pp.89–101. doi: 10.3164/jcbn.20-11.

Bai-Ngew, S. et al., 2021. Antimicrobial activity of a crude peptide extract from lablab bean (Dolichos lablab) for semi-dried rice noodles shelf-life. Quality Assurance and Safety of Crops & Foods, 13(2), pp.25–33. doi: 10.15586/qas.v13i2.882.

Çakir, Ö. et al., 2019. Nutritional and health benefits of legumes and their distinctive genomic properties. Food Science and Technology, 39, pp.1–12. doi: 10.1590/fst.42117.

Chen, J. et al., 2020. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 10(1), 2611. doi: 10.1038/s41598-020-59451-z.

Considine, M.J., Siddique, K.H.M. & Foyer, C.H., 2017. Nature’s pulse power: legumes, food security and climate change. Journal of Experimental Botany, 68(8), pp.1815–1818. doi: 10.1093/jxb/erx099.

Dayib, M., Larson, J. & Slavin, J., 2020. Dietary fibers reduce obesity-related disorders: mechanisms of action. Current Opinion in Clinical Nutrition & Metabolic Care, 23(6), pp.445–450. doi: 10.1097/MCO.0000000000000696.

Delaš, I., 2011. Benefits and hazards of fat-free diets. Trends in Food Science & Technology, 22(10), pp.576–582. doi: 10.1016/j.tifs.2011.08.008.

Dhingra, D. et al., 2012. Dietary fibre in foods: a review. Journal of Food Science and Technology, 49(3), 255. doi: 10.1007/s13197-011-0365-5.

Didinger, C. & Thompson, H.J., 2021. Defining Nutritional and Functional Niches of Legumes: A Call for Clarity to Distinguish a Future Role for Pulses in the Dietary Guidelines for Americans. Nutrients, 13(4), 1100. doi: 10.3390/nu13041100.

Etiosa, O.R., Chika, N.B. & Benedicta, A., 2017. Mineral and Proximate Composition of Soya Bean. Asian Journal of Physical and Chemical Sciences, pp.1–6. doi: 10.9734/AJOPACS/2017/38530.

Gao, X. et al., 2020. Effects of Dietary Starch Structure on Growth Performance, Serum Glucose–Insulin Response, and Intestinal Health in Weaned Piglets. Animals, 10(3), p.543. doi: 10.3390/ani10030543.

Hermanto, F.E. et al., 2022a. On The Hypolipidemic Activity of Elicited Soybeans: Evidences Based on Computational Analysis. Indonesian Journal of Chemistry, 22(6), pp.1626–1636. doi: 10.22146/ijc.75777.

Hermanto, F.E. et al., 2022b. Understanding hypocholesterolemic activity of soy isoflavones: Completing the puzzle through computational simulations. Journal of Biomolecular Structure and Dynamics, in press, pp.1–7. doi: 10.1080/07391102.2022.2148752.

Hyun, T.K., Kim, H.C. & Kim, J.S., 2014. Antioxidant and antidiabetic activity of Thymus quinquecostatus Celak. Industrial Crops and Products, 52, pp.611–616. doi: 10.1016/j.indcrop.2013.11.039.

Irshad, M. et al., 2012. Comparative Analysis of the Antioxidant Activity of Cassia fistula Extracts. International Journal of Medicinal Chemistry, 2012, 157125. doi: 10.1155/2012/157125.

Jahan, K., Qadri, O.S. & Younis, K., 2020. Dietary Fiber as a Functional Food. In Functional Food Products and Sustainable Health. Singapore: Springer, pp. 155–167. doi: 10.1007/978-981-15-4716-4_10.

Jayanti, E.T., Kasiamdari, R.S. & Daryono, B.S., 2011. Morphological Variation and Phenetic Relationship of Hyacinth Bean (Lablab purpureus (L.) Sweet) in Lombok, West Nusa Tenggara. Proceeding ICBB (The International Conference on Bioscience and Biotechnology), 1(1), pp.C9–C15.

Kumar, S. & Pandey, A.K., 2013. Chemistry and biological activities of flavonoids: an overview. TheScientificWorldJournal, 2013, 162750. doi: 10.1155/2013/162750.

Liu, Y.M. et al., 2020. A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2. Cell Reports, 32(6), 108016. doi: 10.1016/j.celrep.2020.108016.

Maass, B.L. et al., 2010. Lablab purpureus—A Crop Lost for Africa? Tropical Plant Biology, 3(3), pp.123–135. doi: 10.1007/s12042-010-9046-1.

Maheshu, V., Priyadarsini, D.T. & Sasikumar, J.M., 2013. Effects of processing conditions on the stability of polyphenolic contents and antioxidant capacity of Dolichos lablab L. Journal of Food Science and Technology, 50(4), pp.731–738. doi: 10.1007/s13197-011-0387-z.

Maphosa, Y. et al., 2017. The Role of Legumes in Human Nutrition, IntechOpen. doi: 10.5772/intechopen.69127.

McGrance, S.J., Cornell, H.J. & Rix, C.J., 1998. A Simple and Rapid Colorimetric Method for the Determination of Amylose in Starch Products. Starch - Stärke, 50(4), pp.158–163. doi: 10.1002/(SICI)1521-379X(199804)50:4<158::AID-STAR158>3.0.CO;2-7.

Missanga, J.S., Venkataramana, P.B. & Ndakidemi, P.A., 2021. Recent developments in Lablab purpureus genomics: A focus on drought stress tolerance and use of genomic resources to develop stress-resilient varieties. Legume Science, 3(3), p.e99. doi: 10.1002/leg3.99.

Mone, D.M.V. & Utami, E.D., 2021. Determinan Kelaparan di Indonesia Tahun 2015-2019. Seminar Nasional Official Statistics, 2021(1), pp.547–556. doi: 10.34123/semnasoffstat.v2021i1.962.

Mullins, A.P. & Arjmandi, B.H., 2021. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients, 13(2), p.519. doi: 10.3390/nu13020519.

Piergiovanni, A.R., 2021. Legumes: staple foods used in rituals and festive events of Apulia region (southern Italy). Food, Culture & Society, 24(4), pp.543–561. doi: 10.1080/15528014.2021.1884420.

Polak, R., Phillips, E.M. & Campbell, A., 2015. Legumes: Health Benefits and Culinary Approaches to Increase Intake. Clinical Diabetes : A Publication of the American Diabetes Association, 33(4), pp.198–205. doi: 10.2337/diaclin.33.4.198.

Pratami, D. et al., 2018. Phytochemical Profile and Antioxidant Activity of Propolis Ethanolic Extract from Tetragonula Bee. Pharmacognosy Journal, 10(1), pp.128–135. doi: 10.5530/pj.2018.1.23.

Purwanti, E., Prihanta, W. & Fauzi, A., 2019a. Nutritional Content Characteristics of Dolichos lablab L. Accessions in Effort to Investigate Functional Food Source. Atlantis Press, pp. 166–170. doi: 10.2991/iccd-19.2019.45.

Purwanti, E., Prihanta, W. & Fauzi, A., 2019b. The Diversity of Seed Size and Nutrient Content of Lablab Bean from Three Locations in Indonesia. International Journal of Advanced Engineering, Management and Science, 5(6), pp.395–402. doi: 10.22161/ijaems.5.6.7.

Purwanti, E. et al., 2021. Exploring public health benefits of Dolichos lablab as a dietary supplement during the COVID-19 outbreak: A computational study. Journal of Applied Pharmaceutical Science, 11,(2), pp.135–140. doi: 10.7324/JAPS.2021.110217.

Purwanti, E. et al., 2022. Unfolding Biomechanism of Dolichos lablab Bean as A Dietary Supplement in Type 2 Diabetes Mellitus Management through Computational Simulation. Research Journal of Pharmacy and Technology, 15(7), pp.3233–3240. doi: 10.52711/0974-360X.2022.00542.

Robson, A.A., 2013. Chapter 25 - Preventing the Epidemic of Non-Communicable Diseases: An Overview. In R. R. Watson & V. R. Preedy, eds. Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease. San Diego: Academic Press, pp. 383–400. doi: 10.1016/B978-0-12-397154-8.00016-6.

Roy, M. et al., 2022. Evaluation of quality parameters and antioxidant properties of protein concentrates and hydrolysates of hyacinth bean (Lablab purpureus). Legume Science, 4(2), p.e128. doi: 10.1002/leg3.128.

Shahidi, F. & Ambigaipalan, P., 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods, 18, pp.820–897. doi: 10.1016/j.jff.2015.06.018.

Sharma, K.R. & Giri, G., 2022. Quantification of Phenolic and Flavonoid Content, Antioxidant Activity, and Proximate Composition of Some Legume Seeds Grown in Nepal. International Journal of Food Science, 2022, e4629290. doi: 10.1155/2022/4629290.

Singh, B. et al., 2017. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International, 101, pp.1–16. doi: 10.1016/j.foodres.2017.09.026.

Singh, N. et al., 2022. Escalate protein plates from legumes for sustainable human nutrition. Frontiers in Nutrition, 9, 977986. doi: 10.3389/fnut.2022.977986.

Singhania, P.R. & Senray, K., 2012. Glycemic response to amylopectin rich starch present in common fasting foods of India. Nutrition & Food Science, 42(3), pp.196–203. doi: 10.1108/00346651211228496.

Sipahli, S. et al., 2021. In vitro antioxidant and apoptotic activity of Lablab purpureus (L.) Sweet isolate and hydrolysates. Food Science and Technology, 42, e55220. doi: 10.1590/fst.55220.

Spiegel, M. et al., 2020. Antioxidant Activity of Selected Phenolic Acids-Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules (Basel, Switzerland), 25(13), 3088. doi: 10.3390/molecules25133088.

Subagio, A., 2006. Characterization of hyacinth bean (Lablab purpureus (L.) sweet) seeds from Indonesia and their protein isolate. Food Chemistry, 95(1), pp.65–70. doi: 10.1016/j.foodchem.2004.12.042.

Tayade, R. et al., 2019. Insight Into the Prospects for the Improvement of Seed Starch in Legume—A Review. Frontiers in Plant Science, 10, 1213. doi: 10.3389/fpls.2019.01213.

Thiex, N., 2009. Evaluation of Analytical Methods for the Determination of Moisture, Crude Protein, Crude Fat, and Crude Fiber in Distillers Dried Grains with Solubles. Journal of AOAC INTERNATIONAL, 92(1), pp.61–73. doi: 10.1093/jaoac/92.1.61.

Zhang, L. et al., 2022. Analysis and Research on Starch Content and Its Processing, Structure and Quality of 12 Adzuki Bean Varieties. Foods, 11(21), p.3381. doi: 10.3390/foods11213381.

Zhao, Y. et al., 2014. In vitro antioxidant activity of extracts from common legumes. Food Chemistry, 152, pp.462–466. doi: 10.1016/j.foodchem.2013.12.006.

Zheng, C.D. et al., 2010. DPPH-Scavenging Activities and Structure-Activity Relationships of Phenolic Compounds. Natural Product Communications, 5(11), pp.1759–1765. doi: 10.1177/1934578X1000501112.



DOI: https://doi.org/10.22146/jtbb.81339

Article Metrics

Abstract views : 518 | views : 448

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)