Mangosteen (Garcinia mangostana L.) Peel Decoction Effect on Embryological Development of Wader Pari Fish Rasbora lateristriata (Bleeker, 1854)
Luthfia Uswatun Khasanah(1), Pradnya Paramita(2), Bambang Retnoaji(3*)
(1) Laboratory of Animal Structure and Development, Faculty of Biology, Universitas Gadjah Mada, Sleman 55281, Indonesia
(2) Laboratory of Animal Structure and Development, Faculty of Biology, Universitas Gadjah Mada, Sleman 55281, Indonesia
(3) Laboratory of Animal Structure and Development, Faculty of Biology, Universitas Gadjah Mada, Sleman 55281, Indonesia
(*) Corresponding Author
Abstract
Mangosteen (Garcinia mangostana L.) is a tropical fruit that has become a sought-after commodity by enthusiasts from various countries, including Indonesia. The active components found in mangosteen peel primarily consist of active xanthone compounds, such as mangostenol, mangostin, mangostino A, mangostino B, tvophylin B, trapezifolixanthone, alpha mangostin, beta mangostin, garcinon B, mangostano, as well as flavonoids epicatechin and gartanin. These compounds exhibit a range of beneficial properties, including anti-inflammatory, antibacterial, antifungal, antihistamine, antidiabetic, anticancer, and more. Consequently, there is significant potential in developing mangosteen peel extract as a valuable ingredient in herbal medicine. However, there is currently no available data on the effects of exposure to mangosteen peel decoction on fish animal models. Therefore, it is essential to investigate the impact of mangosteen peel decoction on wader pari fish (Rasbora lateristriata) embryos. In this study, wader pari embryos were subjected to various concentrations of mangosteen peel decoction (0.5, 1, 5, and 25 µg/mL). The effects on egg hatchability, survival rate (SR), heart rate frequency, and heart morphology of the larvae were meticulously examined using a Leica microscope. The data obtained were subjected to statistical analysis using one-way ANOVA. The findings demonstrated that exposure to mangosteen peel decoction resulted in lower hatching rates and embryonic survival, alongside an increased heart rate frequency. Additionally, the exposed embryos displayed cardiac edema and cardiac bending, particularly at the concentration of 25 µg/mL. In conclusion, the exposure of wader pari fish embryos to mangosteen peel decoction at the concentrations of 25 µg/mL and higher significantly affected the hatching rate, survival rate, and heart rate of R. lateristriata fish larvae.
Keywords
Full Text:
PDFReferences
Abida, F.U., Alam, P. & Retnoaji, B., 2021. Detergents Effect on Egg Hatchability, Morphometry and Larval Bone Structure of Native Indonesian Fish: Wader Pari (Rasbora lateristriata Bleeker, 1854). E3s Web of Conferences, 226, pp.1-8. doi: 10.1051/e3sconf/202122600016
Antkiewicz, D.S. et al., 2005. Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicological Sciences, 84, pp.368–377. doi: 10.1093/toxsci/kfi073.
Kalick, L.S. et al., 2023. Mangosteen for malignancy prevention and intervention: current evidence, molecular mechanisms, and future perspectives. Pharmacol Res, 188, pp.1-24. doi: 10.1016/j.phrs.2022.106630.
Li, J. et al., 2018. Xiaoaiping induces developmental toxicity in zebrafish embryos through activation of ER stress, apoptosis and the wnt pathway. Front. Pharmacol., 9, pp.1-12. doi:10.3389/fphar.2018.01250.
Männer, J., Wessel, A. & Yelbuz, T.M., 2010. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Developmental Dynamics, 239, pp.1035–1046. doi: 10.1002/dvdy.22265.
Masduki, I., 1996. Efek Antibakteri Ekstrak Biji Pinang (Areca catechu) terhadap S.aureus dan E. coli. Cermin Dunia Kedokteran ,109, pp. 4-21.
Miller, M.A. & Zachary, J.F., 2017. Mechanism and morphology of cellular injury, adaptation and death. Phatologic basis of veterinary disease, 2017, pp.2-43. doi: 10.1016/B978-0-323-35775-3.00001-1.
Mohtar, W.A.Q.I.W. et al., 2021. Use of zebrafish embryo assay to evaluate toxicity and safety of bioreactor-grown exopolysaccharides and endopolysaccharides from european Ganoderma applanatum mycelium for future aquaculture applications. Int. J. Mol. Sci, 22(4), p.1675. doi:10.3390/ijms22041675.
Mustapa, M.A., Tuloli, T.S. & Mooduto, A., 2018. Uji toksisitas akut yang diukur dengan penetuan Ld50 ekstrak etanol bunga cengkeh (Syzygium aromaticum L.) terhadap mencit (Mus musculus) menggunakan metode Thompson-Weil. Frontiers: Jurnal Sains dan Teknologi, 1(1), pp.105-117. Doi: 10.36412/frontiers/001035e1/april201801.10.
Pane, M.F., Rahman, A.O. & Ayudia, E.I., 2021. Gambaran penggunaan obat herbal pada masyarakat Indonesia dan interaksinya terhadap obat konvensional tahun 2020. JOMS., 1(1), pp.40-62.
Pelka, K.E. et al., 2017. Size does matter-determination of the critical molecular size for the uptake of chemicals across the chorion of zebrafish (Danio rerio) embryos. Aquatic Toxicology., 185, pp.1-10. doi:10.1016/j.ntt.2006.02.001.
Pratama, S.F., Ana, I.D. & Retnoaji, B., 2021. The effect of Carbonate Hydroxyapatite (CHA) dental implant material on the early development of zebrafish embryos (Danio rerio). Advances in Biological Sciences Research, 14, pp.307-312.
Pratama, S.F., Retnoaji, B. & Ana., 2022. Effects of carbonate hydroxyapatite (CHA) on the development of heart and cranium cartilage of zebrafish (Danio rerio Hamilton, 1882) larvae. Chiang Mai University Journal of Natural Sciences., 21(3), pp.1-16. doi:10.12982/CMUJNS.2022.041.
Raharjeng, A. & Retnoaji, B., 2021. The effect of Dioscorea alata Extract on the early development of zebrafish embryo (Danio rerio) and Rasbora lateristriata. Advances in Social Science, Education and Humanities Research., 536,pp.601-611.
Raharjeng, A.R.P. et al., 2022. Pengaruh Clorpyrifos terhadap perkembangan embrio ikan wader pari (Rasbora lateristriata Bleeker, 1854). Berkala Ilmiah Biologi., 13(2),pp.21-31.
Retnoaji, B. et al., 2016. The Effect of Volcanic Dust on Histological Structure of Wader Pari (Rasbora lateristriata Bleeker, 1854) Organs. AIP Conference Proceedings., 1744(1), pp.020007-1–020007-6.
Rohman, A. et al., 2019. Chemical composition and antioxidant studies of underutilized part of mangosteen (Garcinia mangostana L.) fruit. Journal of Applied Pharmaceutical Science., 9(08), pp.48-52. doi:10.7324/japs.2019.90807.
Rothenbücher, T.S.P. et al., 2019. Zebrafish embryo as a replacement model for initial biocompatibility studies of biomaterials and drug delivery systems. Acta Biomaterialia, 100, pp.235–243. doi: 10.1016/j.actbio.2019.09.038.
Suttirak, W. & Manurakchinakorn, S., 2014. In vitro antioxidant properties of mangosteen peel extract. j Food Sci Technol., 51(12), pp.3546-3558. doi: 10.1007/s13197-012-0887-5
Suwignyo, A., 2014. Uji toksisitas ekstrak etanol kulit manggis (Garcinia mangostana) pada embrio zebrafish (Danio rerio). Sarjana thesis. Universitas Brawijaya.
Widiastuti, I.M. et al., 2018. Acute toxicity test and LC50 value of mercury on tubifex tubifex. International Seminar on Science and Technology, 1242(2019), pp:1-6. doi:10.1088/1742-6596/1242/1/012040.
World Health Organization on behalf of the special programme for Research and Training in Tropical Diseases., 2005. Operational guidance: Information needed to support clinical trials of herbal products Information needed to support clinical trials of herbal products. TDR.
Zakeyudin, M.S. et al., 2012. Assessment of suitability of Kerian River tributaries using length weight relationship and relative condition factor of six freshwater fish species. Journal of Environment and Earth Science., 2(3), pp.52-60.
Zahro, H. et al., 2021. Reproductive aspect and embryonic development of wader pari fish (Rasbora lateristriata Bleeker 1854) from Malang East Java. Advance in Biological Science Research, 22, pp. 540–544.
Zhu, X. et al., 2007. Short communication developmental toxicity in Zebrafish (Danio Rerio) embryos after exposure to manufactured nanomaterials : Buckminsterfulle rene aggregates (nC 60) and Fullerol. Environmental Toxicology and Chemistry, 26, pp.976–979. doi: 10.1897/06-583.1.
Zoupa, M. & Machera, K., 2017. Zebrafish as an alternative vertebrate model for investigating developmental toxicity-the triadimefon example. International Journal of Molecular Sciences., 18(4), pp.1-26. doi: 10.3390/ijms18040.
DOI: https://doi.org/10.22146/jtbb.80645
Article Metrics
Abstract views : 1057 | views : 589Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)