Diversity and Distribution of Ficus (Moraceae) in The Karst Ecosystem of Bantimurung Bulusaraung National Park
Yelastri Yelastri(1), Sulistijorini Sulistijorini(2*), Nina Ratna Djuita(3)
(1) Plant Biology Graduate Program, Departement of Biology, Faculty of Mathematics and Natural Science, IPB University, Jl. Raya Dramaga, Bogor, West Java, 16680, Indonesia.
(2) Departement of Biology, Faculty of Mathematics and Natural Science, IPB University, Jl. Raya Dramaga, Bogor, West Java, 16680, Indonesia.
(3) Departement of Biology, Faculty of Mathematics and Natural Science, IPB University
(*) Corresponding Author
Abstract
Bantimurung Bulusaraung National Park is an area that has the largest karst ecosystem in Indonesia. Karst is prone to damage and difficult to reuse, so it requires conservation efforts. One of the plant species that can maintain this sustainability is Ficus which acts as key species in karst ecosystems. However, at this time the species is experiencing disturbances, one of which is due to the experience of invasive plants that can threaten the existence of Ficus because the weeds can colonize habitats and are dominant which can change species diversity. This study aimed to analyze the diversity and distribution of Ficus, compare species composition, and analyze environmental factors that affect Ficus spp. in Pattunuang Resort and Bantimurung Resort. Vegetation analysis method with nesting plots placed by purposive sampling and supported with environmental and soil data measurements to determine the factors that indicate the habitat preference of Ficus. We found 18 plant species of Ficus spp. in total. At Resort Pattunuang we found 14 Ficus species with the highest abundance being Ficus sundaica (27.55%), while we recorded 15 Ficus species at Resort Bantimurung with the highest abundance being Ficus ampelas (29.23%). Ficus species were uniformly distributed with a relatively high ratio of species composition in both resorts. Principal Component Analysis (PCA) showed that the presence of Ficus in Pattunuang Resort is influenced by wind speed, soil temperature, air temperature, soil moisture, soil pH, and air humidity. In Bantimurung Resort, the existence of Ficus is influenced by wind speed, soil temperature, soil moisture, and air humidity.
Keywords
Full Text:
PDFReferences
Achmad, A. & Hamzah, A.S., 2016. Database karst Sulawesi Selatan. Makassar: Badan Lingkungan Hidup Daerah Provinsi Sulawesi Selatan.
Bain, A., Harrison, R.D. & Schatz, B., 2013. How to be an ant on figs. Acta Oecologica, 1–12. doi: 10.1016/j.actao.2013.05.006.
Bain, A., Tzeng, H., Wu, W. & Chou, L., 2015. Ficus (Moraceae) and fig wasps (hymenoptera: chalcidoidea) in Taiwan. Bot Stud., 56(11), pp.1–12. doi: 10.1186/s40529-015-0090-x.
Balai Konservasi Sumber Daya Alam dan Ekosistem (BKSDAE), 2017. Tumbuhan alien menggerogoti ekosistem karst TN Bantimurung Bulusaraung viewed 10 February 2022, from http://ksdae.menlhk.go.id/info/2681/tumbuhan-alien-menggerogoti-ekosistem-karst-tn-bantimurung-bulusaraung.html.
Balai Taman Nasional Bantimurung Bulusaraung (BTNBB), 2016. Rencana pengelolaan jangka panjang TN Bantimurung Bulusaraung periode tahun 2016 s/d 2025. Maros: Direktorat Konservasi Sumber Daya Alam dan Ekosistem
Barbour, M.G., Burk, J.H. & Pitts, W.D., 1987. Methods of sampling the plant community. San Fransisco: Benjamin/Cummings Publishing.
Berg, C.C. & Corner, E.J.H., 2005. Moraceae: ficeae. In Flora malesiana series I Volume 17, Part 2. Belanda: The National Herbarium of Netherlands.
Berg, C.C. & Wiebes, J.T., 1992. African fig trees AND figs wasps, Netherland: Koninklijke Nederlanse Akademie van Wetenschappen.
Brower, J.E., Zar, J.H. & Ende, C.N.V., 1989. Field and laboratory method for general ecology fourth edition, USA: McGraw-Hill.
Bystriakova, N. et al., 2019. A preliminary evaluation of the karst flora of Brazil using collections data. Sci Rep., 9, pp.1–13. doi: 10.1038/s41598-019-53104-6.
Cahyadi, A., 2017. Pengelolaan kawasan karst dan peranannya dalam siklus karbon di Indonesia. Seminar Nasional Perubahan Iklim di Indonesia, pp.1-14.
Chen, Y. et al., 2022. Root tensile strength of terrace hedgerow plants in the karst trough valleys of SW China: Relation with root morphology and fiber content. Int Soil Water Conserv Res, 10(4), pp.677-686. doi: 10.1016/j.iswcr.2022.01.008.
Chiang, Y.P. et al., 2018. Adaptive phenology of Ficus subpisocarpa and Ficus caulocarpa in Taipei, Taiwan. Acta Oecologica, 90, pp.35–45. doi: 10.1016/j.actao.2017.11.013.
Corlett, R.T., 2006. Figs (Ficus, Moraceae) in urban Hong Kong, south China. Biotropica, 38(1), pp.116–121. doi: 10.1111/j.1744-7429.2006.00109.x.
Cox, G.W., 1978. Laboratory manual of general ecology, New York: WMC Brown.
Cruaud, A. et al., 2012. An extreme case of plant-insect codiversification: figs and fig-pollinating wasps. Syst Biol., 61(6), pp.1029–1047. doi:10.1093/sysbio/sys068.
Dwiyahreni, A.A. et al., 1999. Diet and activity of the bear cuscus, Ailurops ursinus, in North Sulawesi, Indonesia. J Mammal., 80(3), pp.905–912. doi: 10.2307/1383259.
Eviati & Sulaeman, 2009. Analisis Kimia Tanah, Tanaman, Air dan Pupuk. In Petunjuk Teknis Edisi 2. Bogor: Balai Penelitian Tanah.
Flora Malesiana, 2022. Flora Malesiana, viewed 1 March 2022, from https://floramalesiana.org/new/.
Fu, R.H. et al., 2017. Development of fifteen polymorphic microsatellite markers for Ficus virens (Moraceae). Appl Plant Sci., 5(1), 1600101. doi: 10.3732/apps.1600101.
Geekiyanage, N. et al., 2019. Plant ecology of tropical and subtropical karst ecosystems. Wiley Biotropica, 51(5), pp.626-640. doi: 10.1111/btp.12696.
Hammer, Ø., Harper, D.A.T. & Ryan, P.D., 2001. PAST: Paleontological statistic software package for education and data analysis. Palaeontol Electron., 4(1), pp. 1-9.
Hao, G.Y., Cao, K.F., & Goldtein, G., 2016. Hemiephypitic trees: Ficus as a model system for understanding hemiephypites. In Tropical Tree Physiol. Switzerland: Springer, Cham, pp.3–24. doi: 10.1007/978-3-319-27422-5_1.
Harrison, R.D., 2005. Fig and the diversity of tropicl rainforest. BioScience, 55(12), pp.1053–1064.
Harrison, R.D., 2008. Adaptive significance of phenological variation among monoecious hemi-epiphytic figs in Borneo. Symbiosis, 45, pp.83–90.
Harrison, R.D. & Rasplus, J.Y., 2006. Dispersal of fig pollinators in Asian tropical rain forests. Journal of Tropical Ecology, 22, pp.631–639. doi: 10.1017/S0266467406003488.
Harrison, R.D. et al., 2012. Evolution of fruit traits in Ficus subgenus Sycomorus (Moraceae): To what extent do frugivores determine seed dispersal mode? PLoS ONE, 7(6), e38432. doi: 10.1371/journal.pone.0038432.
Hendrayana, Y. et al., 2021. Distribution and association of Ficus spp. in the shrubs area of Gunung Ciremai National Park Indonesia. IOP Conf. Ser.: Earth Environ. Sci., 819, 012078. doi: 10.1088/1755-1315/819/1/012078.
Heywood, V.H. & Iriondo, J.M., 2003. Plant conservation: old problems, new perspectives. Biol Conserv., 113(3), pp.321–335. doi: 10.1016/S0006-3207(03)00121-6.
Huang, Y.T. et al., 2019. Fruiting phenology and nutrient content variation among sympatric figs and the ecological correlates. Bot. Stud., 60, 27. doi: 10.1186/s40529-019-0275-9.
Husson, F. et al., 2017. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining, viewed 17 June 2022 from https://cran.r-project.org/web/packages/FactoMineR/index.html
International Union for Conservation of Nature (IUCN), 2022. The IUCN Red List of Threatened Species, viewed 1 May 2022, from https://www.iucnredlist.org/.
Kinnaird, M.F., O’Brien, T.G. & Suryadi, S., 1996. Population fluctuation in sulawesi red-knobbed hornbills: tracking figs in space and time. Am Ornithol Union., 113(2), pp.431–440. doi: 10.2307/4088909.
Körner, C., 2007. The use of altitude in ecological research. Trends Ecol Evol., 15(11), pp.513–514. doi: 10.1016/j.tree.2007.09.006.
Krebs, C.J., 1989. Ecologycal methodology, New York: Harper Collins.
Kusmana, C., 2017. Metode survey dan interpretasi data ekologi, Bogor: Bogor Agricultural University.
Labahi, P.A., 2021. Behavior of sulawesi black monkey (Macaca maura): a case study of attacking behavior in agricultural plants. IOP Conf. Ser.: Earth Environ. Sci., 788, 012089. doi: 10.1088/1755-1315/788/1/012089.
Liu, Y. et al., 2020. An assessment of soil’s nutrient deficiencies and their influence on the restoration of degraded karst vegetation in Southwest China. Forests, 11(8), 797. doi: 10.3390/f11080797.
Magurran, A.E., 2004. Measuring biological diversity, USA: Blackwell.
Magurran, A.E., 1988. The Commonness, and Rarity, of Species. In Measuring Biologycal Diversity. United Kingdom: TJ International, Padstow, Cornwall.
Misra, K.C., 1988. Manual of plant ecology second edition, New York: Oxford and IBH Pub. Co.
Mueller-Dombois, D. & Ellenberg, H., 1974. Aims and methods of vegetation ecology, USA: John Wiley & Sons, Inc. doi: 10.2307/213332.
Mueller-Dombois, D. & Ellenberg, H., 2016. Ekologi vegetasi: tujuan dan metode, Jakarta: LIPI Pr, pp.1–638.
Osman, K.T., 2013. Soils: principles, properties and management, Springer Dordrecht, pp.129–159. doi: 10.1007/978-94-007-5663-2.
Pepe, M. & Parise, M., 2014. Structural control on development of karst landscape in the salento peninsula (Apulia, se Italy). Acta Carsologica, 43(1), pp.101–114. doi: 10.3986/ac.v43i1.643.
Plant of the world (POWO), 2022. Plant of the world, viewed 1 March 2022, from https://powo.science.kew.org/.
Pothasin, P., Compton, S.G. & Wangpakapattanawong, P., 2014. Riparian Ficus tree communities: the distribution and abundance of riparian fig tree in Northern Thailand. PLoS ONE, 9(10), e108945. doi: 10.1371/journal.pone.0108945.
Rahayuningsih, M., Kurniawan, F.H. & Kartijono, N.E., 2020. The potential of Ficus spesies as frugivorous feed on Gentong Hill, Mount Ungaran, Indonesia. For Ideas., 26(2), pp.540–548.
Retnowati, A. et al., 2014. Environmental ethics in local knowledge responding to climate change: an understanding of seasonal traditional calendar pranoto mongso and its phenology in karst area of Gunung Kidul, Yogyakarta, Indonesia. Procedia Environ Sci., 20, pp.785–794. doi: 10.1016/j.proenv.2014.03.095.
Serrato, A., Ibarra-Manríquez, G. & Oyama, K., 2004. Biogeography and conservation of the genus Ficus (Moraceae) in Mexico. Journal of Biogeography, 31, pp.475–485. doi: 10.1046/j.0305-0270.2003.01039.x.
Shanahan, M. & Compton, S. G., 2001. Vertical stratification of figs and fig-eaters in a Bornean lowland rain forest: How is the canopy different? Plant Ecol., 153(1–2), pp.121–132. doi: 10.1023/A:1017537707010.
Shanahan, M.J., 2000. Ficus Seed Dispersal Guilds: Ecology, Evolution and Conservation Implications. The University of Leeds.
Sun, S. et al., 2018. Karst development mechanism and characteristics based on comprehensive exploration along Jinan Metro, China. Sustainability, 10(10), 3383. doi: 10.3390/su10103383.
Tarachai, Y. et al., 2011. Diversity of figs and their pollinators in Chiang Mai Province, Thailand. Chiang Mai J Sci, 38(4), pp.638–647.
Teixeira, S.P. et al., 2018. Morphological diversity and function of the stigma in Ficus species (Moraceae). Acta Oecologica, 90, pp.117–131. doi: 10.1016/j.actao.2018.02.008.
Tello, J.G., 2003. Frugivores at a fruiting Ficus in south-eastern Peru. J Trop Ecol., 19, pp.717–721. doi: 10.1017/S0266467403006114.
Tongco, M.D.C., 2007. Purposive sampling as a tool for informant selection. Ethnobotany research and applications, 5, pp.147–158. doi: 10.17348/era.5.0.147-158.
Vannoppen, W. et al., 2017. How do root and soil characteristics affect the erosion-reducing potential of plant species? Ecol Eng., 109, pp. 186–195. doi: 10.1016/j.ecoleng.2017.08.001.
Waele, J.D., 2016. Karst processes and landforms. In International Encyclopedia of Geography: People, the Earth, Environment and Technology. John Wiley & Sons. doi: 10.1002/9781118786352.wbieg0968.
Weiblen, G.D., 2000. Phylogenetic relationships of functionally dioecious Ficus (Moraceae) based on ribosomal DNA sequences and morphology. Am J Bot., 87(9), pp.1342–1357. doi: 10.2307/2656726.
Wijaya, I.M.S. & Defiani, M.R., 2021. Diversity and distribution of figs (Ficus: Moraceae) in Gianyar District, Bali, Indonesia. Biodiversitas, 22(1), pp.233–246. doi: 10.13057/biodiv/d220129.
Zhang, W. et al., 2007. The heterogeneity and its influencing factors of soil nutrients in peak-cluster depression areas of karst region. Agric Sci China., 6(3), pp.322–329. doi: 10.1016/S1671-2927(07)60052-2.
Zhao, J. et al., 2014. The soil biota composition along a progressive succession of secondary vegetation in a karst area. PLoS ONE, 9(11), e112436. doi: 10.1371/journal.pone.0112436.
Zhenming, Z., Xianfei, H. & Yingying, L., 2020. Species composition and diversity of plants at different successional stages in small catchments of karst areas. Pakistan J Bot., 52(2), pp.551–556. doi: 10.30848/PJB2020-2(33).
Zhu, X. et al., 2017. Humus soil as a critical driver of flora conversion on karst rock outcrops. Sci Rep., 7, 12611. doi: 10.1038/s41598-017-13060-5.
DOI: https://doi.org/10.22146/jtbb.78811
Article Metrics
Abstract views : 2264 | views : 1888Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)