Plant Growth Promoting Endophytic Microorganisms from Orchids for A Sustainable Agriculture
Lucky Poh Wah Goh(1), Benardette Lyovine Jaisi(2), Roslina Jawan(3), Jualang Azlan Gansau(4*)
(1) Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
(2) Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
(3) Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
(4) Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
(*) Corresponding Author
Abstract
Conventional agriculture practice has heavily relied on chemical fertilizers to increase crop yield. However, long-term application of chemical fertilizers carries tremendous negative impact on the environment and is unsustainable. Hence, the search for an alternative source of fertilizers is required. Orchids are flowers and can be found in tropical countries. The growth and development of orchids are closely tied to the presence of plant growth promoting endophytic microorganisms (PGPM). PGPM harbours various beneficial traits such as potassium and phosphorus solubilization and indole acetic acid and siderophore production which enhance and support plant growth and development. This review article showed that PGPM isolated from orchids could be utilized in conventional agriculture to reduce dependency on chemical fertilizer.
Keywords
Full Text:
PDFReferences
Abadía, J. 1995. Iron Nutrition in Soils and Plants, Springer Netherlands. doi: 10.1007/978-94-011-0503-3
Ahmed, E., Holmström, S.J.M., 2014. Siderophores in environmental research: roles and applications. Microb Biotechnol., 7, pp.196–208. doi: 10.1111/1751-7915.12117.
Al-Karaki, G.N. & Al-Raddad, A., 1997. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza,7, pp.83–88. doi: 10.1007/S005720050166.
Aloni, R. et al., 2006. Role of Cytokinin and Auxin in Shaping Root Architecture: Regulating Vascular Differentiation, Lateral Root Initiation, Root Apical Dominance and Root Gravitropism. Ann Bot., 97, 883. doi: 10.1093/AOB/MCL027.
Arditti, J. & Pridgeon, A.M., 1997. Orchid Biology: Reviews and Perspectives, VII. Springer-Science+Business Media, B.V.
Aznar, A. & Dellagi, A., 2015. New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J Exp Bot., 66, pp.3001–3010. doi: 10.1093/JXB/ERV155.
Bayman, P. et al., 1997. Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae) | Treesearch. New Phytologist., 135(1), pp.143–149. doi: 10.1046/j.1469-8137.1997.00618.x.
Bellenger, J.P. et al., 2008. Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nature Geoscience, 1, pp.243–246. doi: 10.1038/ngeo161.
Benzing, D.H., 1996. Aerial Roots and Their Environments. In Plant Roots The Hidden Half, Marcel Dekker, New York. Scientific Research Publishing.
Booth, C., 1971. The genus Fusarium.
Casimiro, I. et al., 2001. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell., 13(4), pp.843–852. doi: 10.1105/TPC.13.4.843.
Cetzal-Ix, W., Basu, S. & Noguera-Savelli, E., 2014, ‘Orchidaceae: The Largest Family of Flowering Plants’, in The Encyclopedia of Earth, from https://editors.eol.org/eoearth/wiki/Orchidaceae:_The_Largest_Family_of_Flowering_Plants
Chang, P.K. & Ehrlich, K.C., 2010. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Int J Food Microbiol., 138, pp.189–199. doi: 10.1016/J.IJFOODMICRO.2010.01.033.
Chen, L. et al., 2019. Dynamics of fungal communities during Gastrodia elata growth. BMC Microbiol., 19, 158. doi:10.1186/S12866-019-1501-Z/FIGURES/5.
Chen, S. et al., 2019. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome., 7, 136. doi:10.1186/S40168-019-0750-2/FIGURES/5.
Chowdhery, H.J., 2004. Orchid Flora of Arunachal Pradesh: New Hardcover. Bishen Singh Mahendra Pal Sing.
Chutulo, E.C. & Chalannavar, R.K., Endophytic Mycoflora and Their Bioactive Compounds from Azadirachta Indica: A Comprehensive Review. J Fungi (Basel)., 4, pp.42. doi:10.3390/JOF4020042.
Conservingorchids, 2013, ‘Orchids at Kew’ in CONSERVINGORCHIDS, viewed 29 March 2022, from https://conservingorchids.wordpress.com/2013/02/09/orchids-at-kew/
De, L.C. & Singh, D.R., 2015. Biodiversity, conservation and bio-piracy in orchids-an overview. Journal of Global Bioscience., 4, pp.2030–2043.
Deveau, A. et al., 2007. The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytologist., 175(4), pp.743–755. doi: 10.1111/J.1469-8137.2007.02148.X.
Dewar, R.C., 2010. Maximum entropy production and plant optimization theories. Philosophical Transactions of the Royal Society B: Biological Sciences., 365, pp.1429–1435. doi: 10.1098/RSTB.2009.0293.
Duponnois, R. & Garbaye, J., 1991. Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis: effects in aseptic and in glasshouse conditions. Annales des Sciences Forestières., 48, pp.239–251. doi: 10.1051/FOREST:19910301.
Einzmann, H.J.R., Schickenberg, N. & Zotz, G., 2019. Variation in root morphology of epiphytic orchids along small-scale and large-scale moisture gradients. Acta Bot Brasilica., 34, pp.66–73. doi: 10.1590/0102-33062019ABB0198.
Fu, S.F. et al., 2015. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav., 10(8), e1048052. doi: 10.1080/15592324.2015.1048052.
Guarnaccia, V. et al., 2021. Colletotrichum spp. causing anthracnose on ornamental plants in northern Italy. Journal of Plant Pathology., 103, pp.127–137. doi: 10.1007/S42161-020-00684-2/FIGURES/2.
Hadley, G., 1982. Orchid Biology VIII: Reviews and Perspectives, Google Books.
Hardoim, P.R. et al., 2015. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev., 79(3), pp.293–320. doi: 10.1128/MMBR.00050-14.
Herrera, H. et al., 2020. Isolation and Identification of Endophytic Bacteria from Mycorrhizal Tissues of Terrestrial Orchids from Southern Chile. Diversity., 12(2), 55. doi: 10.3390/D12020055.
Hinsinger, P., 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil., 237(2), pp.173–195. doi: 10.1023/A:1013351617532.
Juiling, S. et al., 2020. Conservation assessment and spatial distribution of endemic orchids in Sabah, Borneo. Nature Conservation Research., 5, pp.136–144. doi: 10.24189/NCR.2020.053.
Kalayu, G., 2019. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy., 2019. 4917256. doi: 10.1155/2019/4917256.
Khalifa, A.Y.Z. et al., 2016. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi J Biol Sci., 23(1), pp.79–86. doi: 10.1016/J.SJBS.2015.06.008.
Ko, R.S.-S., 2018. Phalaenopsis aphrodite (moth orchid): Functional genomics and biotechnology. J Plant Pathol Microbiol., 09. doi: 10.4172/2157-7471-C2-010.
Kosegarten , H. et al., 1999. Effects of NH(4)(+), NO(3)(-) and HCO(3)(-) on apoplast pH in the outer cortex of root zones of maize, as measured by the fluorescence ratio of fluorescein boronic acid. Planta., 209, pp.444–452. doi: 10.1007/S004250050747.
Košir, P., Škof, S. & Luthar, Z., 2004. Direct shoot regeneration from nodes of Phalaenopsis orchids. Acta Agriculturae Slovenica, 83, pp.233-242.
Kuo, J., Chang, C.F. & Chi, W.C., 2021. Isolation of endophytic fungi with antimicrobial activity from medicinal plant Zanthoxylum simulans Hance. Folia Microbiol (Praha)., 66, pp.385–397. doi:10.1007/S12223-021-00854-4.
Lacava, P.T. et al., 2008. Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Pesqui Agropecu Bras., 43, pp.521–528. doi: 10.1590/S0100-204X2008000400011.
Lavy, M. & Estelle, M., 2016. Mechanisms of auxin signaling. Development., 143, pp.3226–3229. doi:10.1242/DEV.131870.
Leghari, 2016. Role of Nitrogen for Plant Growth and Development: A review. Advances in Environmental Biology., 10,pp.209–218.
Li, O. et al., 2017. Bacterial and diazotrophic diversities of endophytes in Dendrobium catenatum determined through barcoded pyrosequencing. PLoS One., 12, e0184717. doi: 10.1371/JOURNAL.PONE.0184717.
Liu, H., Luo, Y. & Liu, H., 2010. Studies of Mycorrhizal Fungi of Chinese Orchids and Their Role in Orchid Conservation in China—A Review on JSTOR. The Botanical Review., 76, pp.241–262.
Maheshwari, R., Bhutani, N. & Suneja, P., 2019. Screening and characterization of siderophore producing endophytic bacteria from Cicer arietinum and Pisum sativum plants. J Appl Biol Biotechnol., 7, pp.7–4. doi:10.7324/JABB.2019.70502.
Majit, H.F. et al., 2014. The wild orchids of Crocker range national park, Sabah, Malaysia. Malayan Nature Journal., 66(4), pp.440–462.
Marchant, A. 2002. AUX1 Promotes Lateral Root Formation by Facilitating Indole-3-Acetic Acid Distribution between Sink and Source Tissues in the Arabidopsis Seedling. Plant Cell., 14(3), pp.589-597. doi:10.1105/TPC.010354
Ma, X. et al., 2016. Non-mychorrizal endophytic fungi from orchids. Curr Sci., 109, pp.72-87.
Mouhamad, R., Atiyah, A. & Iqbal, M., 2016. Behavior of potassium in soil: a mini review. Chemistry International., 2, pp.58–69.
Nair, V.G. et al., 2018. Analgesic and anti-inflammatory activities of Bulbophyllum neilgherrense Wight. pseudobulb: A folklore plant. AYU., 39, pp.76–80. doi: 10.4103/AYU.AYU_134_16.
Nayar, M.P., 1996. Hot spots of endemic plants of India, Nepal and Bhutan, Tropical Botanic Garden and Research Institute.
Pahari, A. et al., 2017. Bacterial Siderophore as a Plant Growth Promoter. In Microb Biotechnol. Singapore: Springer. doi:10.1007/978-981-10-6847-8_7.
Pant, B. et al., 2017. An overview on orchid endophytes. In Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer International Publishing. doi:10.1007/978-3-319-68867-1_26.
Parthibhan, S., Rao, M.V. & Senthil Kumar, T., 2017. Culturable fungal endophytes in shoots of Dendrobium aqueum Lindley – An imperiled orchid. Ecol Genet Genom., 3–5, pp.18–24. doi: 10.1016/J.EGG.2017.06.004.
Puri, A., Padda, K.P. & Chanway, C.P., 2017. Nitrogen-Fixation by Endophytic Bacteria in Agricultural Crops: Recent Advances. Nitrogen in Agriculture - Updates. doi: 10.5772/INTECHOPEN.71988.
Rashid, M.I. et al., 2016. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res., 183, pp.26–41. doi: 10.1016/J.MICRES.2015.11.007.
Rodríguez, H. & Fraga, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv., 17, pp.319–339. doi:10.1016/S0734-9750(99)00014-2.
Rubluo, A. et al., 1993. Strategies for the recovery of endangered orchids and cacti through in-vitro culture. Biol Conserv., 63(2), pp.163–169. doi: 10.1016/0006-3207(93)90505-U.
Salazar, J.M. et al., 2020. Endophytic fungi associated with roots of epiphytic orchids in two Andean forests in southern Ecuador and their role in germination. Lankesteriana, 20(1), pp.37–47. doi: 10.15517/LANK.V20I1.41157.
Sánchez-Cruz, R. et al., 2019. Isolation and characterization of endophytes from nodules of Mimosa pudica with biotechnological potential. Microbiol Res., 218, pp.76–86. doi: 10.1016/J.MICRES.2018.09.008.
Sarsaiya, S., Shi, J. & Chen, J., 2019. A comprehensive review on fungal endophytes and its dynamics on Orchidaceae plants: current research, challenges, and future possibilities. Bioengineered., 10, pp.316–334. doi: 10.1080/21655979.2019.1644854.
Scherr, S.J. et al., 2014. Ecoagriculture: Integrated Landscape Management for People, Food, and Nature. In Encyclopedia of Agriculture and Food Systems. Elsevier.
Schwyn, B. & Neilands, J.B., 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem., 160, pp.47–56. doi: 10.1016/0003-2697(87)90612-9.
Semiarti, E., 2018. Orchid biotechnology for Indonesian orchids conservation and industry. AIP Conf Proc., 2002, 020022. doi: 10.1063/1.5050118.
Shah, S. et al., 2021. A prospectus of plant growth promoting endophytic bacterium from orchid (Vanda cristata). BMC Biotechnol., 21, 16. doi: 10.1186/S12896-021-00676-9/FIGURES/4.
Shakeel, M. et al., 2015. Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front Microbiol., 6, 1286. doi: 10.3389/FMICB.2015.01286/BIBTEX.
Shrestha, R., Shah, S. & Pant, B., 2018. Identification of endophytic fungi from roots of two Dendrobium species and evaluation of their antibacterial property. Afr J Microbiol Res., 12, pp.697–704. doi: 10.5897/AJMR2018.8924.
Sparks, D.L. & Huang, P.M., 1985. Physical Chemistry of Soil Potassium, Scientific Research Publishing.
Srivastava, S., Kadooka, C. & Uchida, J.Y., 2018. Fusarium species as pathogen on orchids. Microbiol Res., 207, pp.188–195. doi: 10.1016/J.MICRES.2017.12.002.
Sultenfuss, J.H. & Doyle, W.J., 1999. Functions of phosphorus in plants. Better Crops with Plant Food., 83, pp.6–7.
Tajer, A., 2021. What is the Best Potassium Fertilizer? – Greenway Biotech, Inc. [WWW Document]. URL https://www.greenwaybiotech.com/blogs/gardening-articles/what-is-the-best-potassium-fertilizer (accessed 4.3.22).
Teale, W.D., Paponov, I.A. & Palme, K., 2006. Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology., 7, pp.847–859. doi: 10.1038/nrm2020.
Tsavkelova, E.A. et al., 2007a. Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res, 162, pp.69–76. doi: 10.1016/J.MICRES.2006.07.014.
Vujanovic, V. et al., 2000. Viability Testing of Orchid Seed and the Promotion of Colouration and Germination. Ann Bot., 86(1), pp.79–86. doi: 10.1006/ANBO.2000.1162.
Wedge, D. & Elmer, W., 2008. Fusarium Wilt of Orchids. Trade Journal., 2, pp.9–11.
Wilkinson, C.L. et al., 2018. Land-use change is associated with a significant loss of freshwater fish species and functional richness in Sabah, Malaysia. Biol Conserv., 222, pp.164–171. doi: 10.1016/J.BIOCON.2018.04.004.
Wilson, D., 1995. Endophyte: The Evolution of a Term, and Clarification of Its Use and Definition. Oikos., 73, pp.274. doi: 10.2307/3545919.
Xu, X. et al., 2020. Effects of Potassium Levels on Plant Growth, Accumulation and Distribution of Carbon, and Nitrate Metabolism in Apple Dwarf Rootstock Seedlings. Front Plant Sci., 11, 904. doi: 10.3389/FPLS.2020.00904/BIBTEX.
Yang, Y.L., Liu, Z.-Y. & Zhu, G.-S., 2008. Study on Symbiotic Seed Germination of Pleione bulbocodioides(Franch) Rolfe. Microbiology., 35, pp.909–912.
Zahara, M. & Win, C.C., 2019. Morphological and Stomatal Characteristics of Two Indonesian Local Orchids. Journal of Tropical Horticulture., 2, pp.65–69. doi: 10.33089/JTHORT.V2I2.26.
Zapata, F. & Zaharah, A.R., 2002. Phosphorus availability from phosphate rock and sewage sludge as influenced by the addition of water soluble phosphate fertilizer. Nutr Cycl Agroecosyst., 63, pp.43–48. doi: 10.1023/A:1020518830129.
Zhang, F.S et al., 2013. Promoting role of an endophyte on the growth and contents of kinsenosides and flavonoids of Anoectochilus formosanus Hayata, a rare and threatened medicinal Orchidaceae plant. J Zhejiang Univ Sci B., 14(9), pp.785-792. doi: 10.1631/JZUS.B1300056.
DOI: https://doi.org/10.22146/jtbb.74403
Article Metrics
Abstract views : 1171 | views : 722Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)