Detection of AtRKD4 Gene and Induction of Somatic Embryo in Transformant of Phalaenopsis amabilis Carrying 35S::GR::AtRKD4

https://doi.org/10.22146/jtbb.71211

Dika Sundari(1), Naufal Ghozi Aditya Perdana(2), Windi Mose(3), Jose Gutierrez -Marcos(4), Endang Semiarti(5*)

(1) Graduate School of Magister Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
(2) Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Faculty of Mathematics and Natural Sciences, Universitas Pattimura, Maluku, Indonesia
(4) School of Life Science, University of Warwick
(5) Graduate School of Magister Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Phalaenopsis amabilis (L.) Blume is a native Indonesian orchid that plays an important role in the breeding of orchid’s hybrid worldwide. The high consumer demand causes a decline in the population of orchids for commercial trade. Plant propagation through induction of somatic embryogenesis will be very beneficial, because plants can be obtained in large numbers and uniform. AtRKD4 gene is an important gene in the model plant Arabidopsis thaliana which functions very early in development stage to initiate embryo formation. The AtRKD4 gene has been inserted into the P. amabilis orchid and several transformants have been obtained. This study aims to determine the stability integration of the AtRKD4 gene in the transformant P. amabilis genome and induce somatic embryo formation on transformant orchids. Plantation of leaf explants from P. amabilis transformants on hormone-free New Phalaenopsis basic medium induced somatic embryo formation by 20%.  Anatomical analysis showed that there is no difference stage between anatomy of somatic embryo development pattern in P. amabilis transformant and somatic embryo development pattern of monocot plants in general, PCR analysis using AtRKD4 specific primers showed that the embryos still contained 198 bp fragments of the AtRKD4 gene. In conclusion, the AtRKD4 gene is stably integrated in the P. amabilis orchid genome and can continuously induce the formation of somatic embryo from somatic cells of orchid transformants.

Keywords


AtRKD4; embryo gene; Arabidopsis thaliana; Phalaenopsis amabilis; somatic embryo

Full Text:

PDF


References

Alcantara, G.B. et al., 2014. Plant regeneration and histological study of the somatic embryogenesis of sugarcane (Saccharum spp.) cultivars RB855156 and RB72454. Acta Scientiarum - Agronomy, 36(1), pp.63–72. doi: 10.4025/actasciagron.v36i1.16342.

Aoyama, T. & Chua, N.H., 1997. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant Journal, 11(3), pp.605–612. doi: 10.1046/j.1365-313X.1997.11030605.x.

Von Arnold, S. et al., 2002. Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 69(3), pp.233–249. doi: 10.1023/A:1015673200621.

Cascia, G. et al., 2012. Investigation of ascorbate metabolism during inducement of storage disorders in pear. Physiologia Plantarum, 147(2), pp.121–134. doi: 10.1111/j.1399-3054.2012.01641.x.

Chardin, C. et al., 2014. The plant RWP-RK transcription factors: Key regulators of nitrogen responses and of gametophyte development. Journal of Experimental Botany, 65(19), pp.5577–5587. doi: 10.1093/jxb/eru261.

Deng, Z. et al., 2015. Molecular cloning, expression profiles and characterization of a glutathione reductase in Hevea brasiliensis. Plant Physiology and Biochemistry, 96, pp.53–63. doi: 10.1016/j.plaphy.2015.07.022.

Deo, P.C. et al., 2010. Factors affecting somatic embryogenesis and transformation in modern plant breeding. The South Pacific Journal of Natural and Applied Sciences, 28(1), p.27. doi: 10.1071/sp10002.

Dwiyani, R. et al., 2015. Micropropagation of orchid carrying knottedl-like from arabidopsis thaliana (Knatl) gene. Plant Tissue Culture and Biotechnology, 25(1), pp.13–20. doi: 10.3329/ptcb.v25i1.24121.

Di Guardo, M. et al., 2013. A Multidisciplinary Approach Providing New Insight into Fruit Flesh Browning Physiology in Apple (Malus x domestica Borkh.). PLoS ONE, 8(10), e78004. doi: 10.1371/journal.pone.0078004.

Gutiérrez-Mora, A. et al., 2012. Plant Somatic Embryogenesis: Some Useful Considerations. In Embryogenesis. Mexico. doi: 10.5772/2143.

Horstman, A., Bemer, M. & Boutilier, K., 2017. A transcriptional view on somatic embryogenesis. Regeneration, 4(4), pp.201–216. doi: 10.1002/reg2.91.

Hsing, H.X. et al., 2016. Efficient and heritable transformation of Phalaenopsis orchids. Botanical Studies, 57(1), pp.1–12. doi: 10.1186/s40529-016-0146-6.

Iwase, A. et al., 2011. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in arabidopsis. Current Biology, 21(6), pp.508–514. doi: 10.1016/j.cub.2011.02.020.

Karami, O., Aghavaisi, B. & Mahmoudi Pour, A., 2009. Molecular aspects of somatic-to-embryogenic transition in plants. Journal of Chemical Biology, 2(4), pp.177–190. doi: 10.1007/s12154-009-0028-4.

Mondal, T., Aditya, S. & Banerjee, N., 2016. Role of plant growth regulators on asymbiotic seed germination and seedling development of Vanda coerulea Griff. ex Lindl. an endangered orchid. Indian Journal of Fundamental and Applied Life Sciences, 6(3), pp.36–41.

Mose, W., 2019. Induksi Embriogenesis Somatik Tanaman Anggrek Phalaenopsis amabilis (L.) Blume dengan Zat Pengatur. Universitas Gadjah Mada.

Mursyanti, E. et al., 2015. Induction of Somatic Embryogenesis through Overexpression of ATRKD4 Genes in Phalaenopsis “Sogo Vivien.” Indonesian Journal of Biotechnology, 20(1), pp.42–53. doi: 10.22146/ijbiotech.15276.

Neelakandan, A.K. & Wang, K., 2012. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Reports, 31, pp.597–620. doi: 10.1007/s00299-011-1202-z.

Ouwerkerk, P.B. et al., 2001. Glucocorticoid-inducible gene expression in rice. Planta, 213, pp.370–378. doi: 10.1007/s004250100583.

Pangestu, F., Aziz, S.A. & Sukma, D., 2014. Karakterisasi Morfologi Anggrek Phalaenopsis Hibrida Morphological Characterization of Phalaenopsis Hybrid. Indonesian Horticultural Journal, 5(1), pp.29–35.

Picard, D., 1993. Steroid-binding domains for regulating the functions of heterologous proteins in cis. Trends in Cell Biology, 3(8), pp.278–280. doi: 10.1016/0962-8924(93)90057-8.

Rahayu, E.M. Della, 2015. Konservasi anggrek bulan (Phalaenopsis spp.) di Pusat Konservasi Tumbuhan Kebun Raya -LIPI, Bogor. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 1(8), pp.1847–1850. doi: 10.13057/psnmbi/m010816.

Semiarti, E. et al., 2007. Agrobacterium-mediated transformation of the wild orchid species Phalaenopsis amabilis. Plant Biotechnology, 24(3), pp.265–272. doi: 10.5511/plantbiotechnology.24.265.

Semiarti, E. et al., 2011. Agrobacterium -Mediated Transformation of Indonesian Orchids for Micropropagation. In Genetic Transformation. pp. 215–240.

Semiarti, E., 2018. Orchid biotechnology for Indonesian orchids conservation and industry. In AIP Conference Proceedings. pp. 1–6. doi: 10.1063/1.5050118.

Setiari, N. et al., 2018. Microporopagation of Dendrobium phalaenopsis Orchid Through Overexpression of Embryo Gene AtRKD4. Journal of Agricultural Science, 40(2), pp.284–294. doi: 10.1017/S0021859618000163.

Shekarriz, P. et al., 2014. Coconut Water and Peptone Improve Seed Germination and Protocorm Like Body Formation of Hybrid Phalaenopsis. Agriculture Science Developments, 3(10), pp.317–322.

Steeves, T.A. & Sussex, I.M., 1989. Patterns in Plant Development 2nd ed., New York: Cambridge University Press. doi: 10.2307/2484650.

Sulasiah, A., Tumilisar, C. & Lestari, T., 2015. Pengaruh Pemberian Jenis Dan Konsentrasi Auksin Terhadap Induksi Perakaran Pada Tunas Dendrobium Sp Secara in Vitro The Effect of Types and Concentrations of Auxin on Rooting Induction on Dendrobium sp Bud in In Vitro. Bioma, 11(1), pp.59–66.

Sutikno, 2016. Bahan Ajar Mikroteknik Tumbuhan, Yogyakarta: Fakultas Biologi Universitas Gadjah Mada.

Waki, T. et al., 2011. The arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Current Biology, 21(15), pp.1277–1281. doi: 10.1016/j.cub.2011.07.001.

Yang, X. & Zhang, X., 2010. Regulation of somatic embryogenesis in higher plants. Critical Reviews in Plant Sciences, 29(1), pp.36–57. doi: 10.1080/07352680903436291.



DOI: https://doi.org/10.22146/jtbb.71211

Article Metrics

Abstract views : 922 | views : 742

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)