Growth and Physiological Attributes of Rice by the Inoculation of Osmotolerant Rhizobacteria (Enterobacter flavescens) under Drought Condition
Hasna Dyah Kusumardani(1), Triwibowo Yuwono(2), Diah Rachmawati(3*)
(1) Departement of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, Indonesia, 55281
(2) Departement of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Bulaksumur, Yogyakarta, Indonesia, 55281
(3) Departement of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, Indonesia, 55281
(*) Corresponding Author
Abstract
Rice (Oryza sativa L.) has mechanism for morphological, physiological, and biochemical self-defense in response to drought conditions. The ability of osmotolerant rhizobacteria to develop association with plants suggests that it could be used as an inoculum to support plant growth under drought stress. The purpose of this study is to determine the response of ‘IR64’ and ‘Situ Bagendit’ to the inoculation with osmotolerant rhizobacteria under drought conditions. The experiment had 3 treatment factors: 2 rice cultivars ('IR64' and 'Situ Bagendit'), 3 drought treatments (25%, 50% and 100% field capacity), and 2 types of rhizobacteria treatments (without inoculation and with inoculation using osmotolerant rhizobacteria (Enterobacter flavescens). Plant growth was measured in terms of plant height, number of leaves, number of tillers and panicles, and percentage of filled grain. Physiological and biochemical parameters, namely chlorophyll, carotenoids, proline, superoxide dismutase (SOD) peroxidase (POX) and ascorbate peroxidase (APX) were measured. The inoculation of osmotolerant rhizobacteria enhanced ‘IR64’ and ‘Situ Bagendit’ growth (plant height, number of leaves, tillers and panicles) and increased the percentage of grains in ‘IR64’ cultivar. Proline content, SOD, and APX activities were all increased by osmotolerant rhizobacteria inoculation, however, carotenoid content was decreased. Plant growth, physiological and biochemical responses of both cultivar to drought were enhanced by inoculation with osmotolerant rhizobacteria.
Keywords
Full Text:
PDFReferences
Abou-Khalifa, A.B., Misra, A.N., & Salem, A., 2008. Effect of leaf cutting on physiological traits and yield of two rice cultivars. African Journal of Plant Science, 2(12), pp.147–150. doi: 10.5897/AJPS/9000084.
Anjum, S.A. et al., 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6 (9), pp.2026–2032. doi: 10.5897/AJAR10.027.
Arora, A. et al., 2002. Oxidative stress and antioxidative system in plants. Current Science, 82(10), pp.1227-1238. https://www.jstor.org/stable/24107045.
Bates, L.S. et al., 1973. Rapid determination of free proline for water-stress studies. Plant Soil , 39, pp. 205-207. doi: 10.1007/BF00018060.
Bhattacharjee, S., 2005. Reactive oxygen species and oxidative burst : Roles in stress, senescence and signal transduction in plants, Current Science, 89 (7), pp.1113-1121.
Bouman, B. & Tuong, T.P., 2001. Field Water Management to Save Water and Increase in Productivity in Irrigated Lowland Rice. Agricultural Water management, , 1615, pp.1–20. doi: 10.1016/S0378-3774(00)00128-1.
Chandrashekar, K.R. & Sandhyarani, 1996. Salinity induced chemical changes in Crotalaria striata dc. plants, Indian Journal of Plant Physiologi, 1(1), pp 44–48.
Chaitanya, K. et al., 2002. Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regulation, 36(2), pp. 175-180. doi: 10.1023/A:1015092628374.
Csonka, L.N., 1989. Physiological and genetic responses of Bacteria to osmotic Stress, Microbiological Reviews, 53(1), pp.121-147. doi: 10.1128/mt/53/1/121/147.1989.
Du, H. et al., 2010. Characterization of the b -Carotene Hydroxylase Gene DSM2 Conferring Drought and Oxidative Stress Resistance by Increasing Xanthophylls and Abscisic Acid Synthesis in Rice. Plant Physiology, 154(3), pp.1304–1318. doi: 10.1104/pp.110/163741.
Elango, R. et al., 2013. Field level studies on the association of plant growth promoting rhizobacteria (PGPR) in Gloriosa Superba L. rhizosphere. Indian Streams Research Journal. , 3(10), pp.1-6. doi: 10.9780/22307850
Farooq, M. et al., 2009. Plant Drought Stress : Effects , Mechanisms and Management Review article. Agronomy for Sustainable Development, 29, pp.185-212. doi: 10.1051/agro:2008021
Gholami, A. et al., 2008. Effect Of Seed Priming With Growth Promoting Rhizobacteria At Different Rhizosphere Condition On Growth Parameter Of Maize. International Meeting On Soil Fertility Land Management and Agroclimatology, 851–856.
Guo, Z. et al., 2006. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemiscry, 44(11-12), pp. 828-36. doi: 10.1016/j/plaphy/.2006.10.024.
Halliwell, B., 2006. Reactive Species and Antioxidants . Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiology , 141(2), pp.312–322. doi: 10.1104/pp.106.077073.
Harborne, A., 1984. Phytochemical Methods: A Guide to Modern Technique of Plant Analysis. 2nd ed. New York: Chapman and Hall. London.
Hayat, S. et al., 2012. Role of proline under changing environments a review. Plant Signal Behavior, 7(11), pp.1456-1466. doi: 10.4161/psb.21949.
Hiraga, S. et al., 2000. Diverse expression profiles of 21 rice peroxidase genes. Federation of European Biochemical Societies, 471, pp 245–250. doi: 10.1016/S0014-5793(00)01409-5.
HongBo, S. et al., 2005. Change of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids and Surface B: Biointerfaces, 45(1), pp. 7-13. doi: 10.1016/j.colsurfb.2005.06.016.
Jaleel, C.A. et al., 2009. Drought Stress in Plants : A review on morphological characteristics andpigments compotition, International Journal of Agriculture and Biology, 11, pp. 100-105.
Kar, M. & Dinabandhu M., 1976. Catalase, Peroxidase and Polyphenooxidase Activities Druring Rice Leaf Senescens. Plant Physiology, 57(2), pp. 315-319. doi: 10.1104/pp.57.2.315.
Kiani, S.P. et al., 2008. QTL analysis of chlorophyll fluorescens parameters in sunflower (Helianthus anuus L.) under well-watered and water stresses conditions. Plant Science, Volume 175(4), pp. 565-573. doi: 10.1016/j.plantsci.2008.06.002.
Kunin, C. & Rudi J., 1991. Effect of NaCl-induced osmotic stress on intracellular concentrations of glycine betaine and potassium in Escherichia coli, Enterococcus faecalis, and staphylococci. Journal of Laboratory Clinical Medicine, 118, pp. 217-224. doi: 10.5555/URI:PII:002221439290065F.
Lagrimini, L.M. et al., 1997. Characterization of Antisense Transformed Plants Deficient in the Tobacco Anionic Peroxidase. Plant Physiology, 114(4), pp.1187-1196. doi: 10.1104/pp.114.4.1187.
Lascano, H.R. et al., 2001. Antioxidant system response of different wheat cultivars under drought: field and in vitro studies. Australian Journal of Plant Physiology, 28, pp. 1095-1102. doi: 10.1071/PP01061.
Lima, A.L. et al., 2002. Photochemical responses and oxidative stress in two clones of Coffea canephore under water deicit conditions. Environmental and Experimental Botany, 47(3), pp.239-247. doi: 10.1016/S0098-8472(01)00130-7.
Loon, L.C.V., 2007. Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, pp.243–244. doi: 10.1007/s10658-007-9165-1.
Marklund, S. & Marklund, G., 1974. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. European Journal of Biochemistry, 47, pp.469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x.
Martinez-Ferri, E. et al., 2004. Winter photoinhibition in the field involves different processes in four co-occurring Mediterranean tree species. Tree Physiology, 24(9), pp.981–990. doi: 10/1093/treephys/24.9.981.
Massacci, A. et al., 2008. Response of the photosynthetic apparatus of cotton (Gossypium hirsiutum) to the onset of drought stress under field condition studied by gas-exchange analysis and chlorophyl fluorescens imaging. Plant Physiology and Biochemistry, 46(2), pp.189-195. doi: 10.1016/j.plaphy.2007.10.006.
Miller, K. & Janet M.W., 1996. Osmoadaptation by Rhizosphere bacteria. Annual Review of Microbiology, 50, pp.101-136. doi: 10.1146/annurev.micro.50.1.101.
Miller, G. et al., 2008. Reactive Oxygen Signaling Abiotic Stress. Physiology Plant, 133(3), pp.481-489. doi: 10.1111/j.1399-305.2008.01090.x.
Mundree, S.G. et al., 2004. Physiological and Molecular Insights into Drought Tolerance. African Journal of Biotechnology, 1(2), pp.28-38. doi: 10.5897/AJB.2002.000.006.
Munro, P.M. et al, 1989. Influence of osmoregulation processes on starvation survival of Escherichia coli in seawater. Applied and Environmental Microbiology, 55(8), pp.2017-2024. doi: 10.1128/aem.55.8.2017-2024.1989.
Nakano, Y. & Asada. K., 1980. Plant Cell Physiol, Oxford University Press., Japan. 21, pp. 1295-13770.
Nakano, Y. & Asada, K., 1981, Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts, Plant & Cell Physiol, 22(5), 67–880. doi: 10.1093/oxfordjournals.pcp.a076232.
Noctor, G. et al, 2000. Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. Philosophical Transactions of the Royal Society B Biological Sciences, 355(1402). pp.1465.®1475. doi:10.1098/rstb.2000.0707
Ozkur, O. et al., 2009. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environmental and Experimental Botany, 66, pp.487-492. doi: 10.1016/j.envexpbot/2009/04/003.
Peltzer, D. et al., 2002. Differential temperature dependencies of antioxidative enzymes in two contrasting species : Fagus sylvatica and Coleus blumei. Plants Physiolpgy and Biochemistry, 40(2), pp. 141-150. doi: 10.1016/s0981-9428(01)01352-3.
Pinheiro, C. et al., 2004. Effect of drought and rewatering on the metabolism of Lupinus albus organs. Journal of Plant Physiology, 161(11), pp.1203-1210. doi: 10.1016/j.jplph.2004.01.016
Reddy, A.R. et al., 2002. Water stress-mediated changes in antioxidant enzymes activitiesof mulberry (Morus alba L.). Journal Sericultural Science of Japan., 69, pp. 169-175. doi: 10.11416/kontyushigen.1930.69.169.
Refli, R. & Yekti, A.P., 2016. The response of antioxidant genes in rice (Oryza sativa L.) seedling Cv . Cempo Ireng under drought and salinity stresses, AIP Conference Proceedings, 1744, pp.020047-1 - 020047-8. doi: 10.1063/1/4953521.
Sakamoto, A. & N. Murata, 2002. The role of glycine betaine in the protection of plants from stress : clues from transgenic plants.. Plant Cell & Environment, 25(2), pp. 163-171. doi: 10.1046/j.0016-8025.2001.00790.x.
Salsinha, Y.C.F. et al., 2021. Physiological and oxidative defence responses of local rice cultivars "Nusa Tenggara Timur-Indonesia" during vegetative drought stress. Australian Journal of Crop Science, 15(03), pp.394-400. doi: 10.21475/ajcs.21.15.03.p2851.
Shehab, G.G. et al., 2010. Effects of Various Chemical Agents for Alleviation of Drought Stress in Rice Plants ( Oryza sativa L .). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), pp.139–148. doi: 10.1583/nbha3813627.
Suprihatno, B. et al., 2009, Deskripsi Varietas Padi. Subang: Balai Besar Penelitian Tanaman Padi.
Usman, M. et al., 2019. Morphological, Physiological and Biochemical Attributes as Indicators for Drought Tolerance in Rice (Oryza sativa L.). European Journal of Biological Sciences, 5 (1), pp.23-28. doi: 10.5829/idosi.ejbs.2013.5.1.1104.
Van Heerden, P. & G.H. Kruger, 2002. Separately and simultaneously induced dark chilling and drought stress effects on photosynthesis, proline accumulation and antioxidant metabolis in soybean. Journal Plant Physiology, 159, pp. 1077-1086. doi: 10.1078/0176-1617-00745.
Wang, F.Z. et al., 2005. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. Journal of Plant Physiology, 162(4), pp. 465-472. doi: 10.1016/j.jplph.2004.09.009.
Yuwono, T., 2005. Metabolism of betaine as a carbon source by an osmotolerant bacterium isolated from the weed rhizosphere, World Journal of Microbiology & Biotechnology, 21, pp. 69–73. doi: 10.1007/s11274-004-1935-8.
DOI: https://doi.org/10.22146/jtbb.67359
Article Metrics
Abstract views : 1596 | views : 1400Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)