The Potential of Trichosanthes tricuspidata Lour. from Bangli, Baturiti, Bali for Free Radicals Scavenging

Arrohmatus Syafaqoh Li'aini(1*), Farid Kuswantoro(2), Aninda Retno Utami Wibowo(3), Cokorda Istri Meyga Semarayani(4), Putri Kesuma Wardhani(5)

(1) Research Center for Plant Conservation and Botanical Gardens, National Research and Innovation Agency, Candikuning, Baturiti, Tabanan, Bali 82191
(2) Research Center for Plant Conservation and Botanical Gardens, National Research and Innovation Agency, Candikuning, Baturiti, Tabanan, Bali 82191
(3) Research Center for Plant Conservation and Botanical Gardens, National Research and Innovation Agency, Candikuning, Baturiti, Tabanan, Bali 82191
(4) Research Center for Plant Conservation and Botanical Gardens, National Research and Innovation Agency, Candikuning, Baturiti, Tabanan, Bali 82191
(5) Research Center for Plant Conservation and Botanical Gardens, National Research and Innovation Agency, Candikuning, Baturiti, Tabanan, Bali 82191
(*) Corresponding Author


In addition to the studies on potential medicinal uses of Trichosanthes, a screening on phytochemical compounds and antioxidants activity of Trichosanthes tricuspidata from Bangli, Baturiti, Bali, Indonesia, was conducted on its leaves, fruits, peels, and seeds. Qualitative phytochemical tests were conducted to find out the chemical constituents of T. tricuspidata, while its antioxidant activity was tested by applying DPPH (1,1-diphenyl-2-picrylhydrazyl radical) method. As a result, flavonoid, alkaloid, terpenoid, tannin, and saponin were present in all methanolic extracts of T. tricuspidata. Furthermore, the best antioxidant activity was exhibited by peel extract. After all, T. tricuspidata contains a prospective compound agent for medicinal use.



antioxidant; Cucurbitaceae; DPPH; methanol extract; phytochemical

Full Text:



Ahuja, A. et al., 2019. Trichosanthes tricuspidata Lour methanol extract exhibits anti-inflammatory activity by targeting Syk, Src, and IRAK1 kinase activity. Hindawi: Evidence-Based Complementary and Alternative Medicine, pp.1–14. doi: 10.1155/2019/6879346.

Arawwawala, M. et al., 2011. In vitro and in vivo evaluation of antioxidant activity of Trichosanthes cucumerina aerial parts. Acta Biologica Hungarica, 62(3), pp.235–243. doi: 10.1556/ABiol.62.2011.3.3.

Ardekani, M.R.S. et al., 2010. Comparison of antioxidant activity and total phenol contents of some date seed varieties from Iran. Irianian Journal of Pharmaceutical Research, 9(2), pp.141–146.

Arifin, B. & Ibrahim, S., 2018. Struktur, bioaktivitas, dan antioksidan flavonoid. Jurnal Zarah, 6(1), pp.21–29. doi: 10.31629/zarah.v6i1.313.

Aseervatham, G.S.B. et al., 2019. Free radical scavenging potential and antihaemolytic activity of methanolic extract of Pouteria campechiana (Kunth) Baehni. and Tricosanthes tricuspidata Linn. Biocatalysis and Agricultural Biotechnology, 18, pp.101031. doi: 10.1016/j.bcab.2019.101031.

Attard, E. & Martinoli, M.G., 2015. Cucurbitacin E, an experimental lead triterpenoid with anticancer, immunomodulatory, and novel effects against degenerative diseases. A mini review. Current topics in medicinal chemistry, 15(17), pp.1708–1713.

Amaral, J.A. et al., 1998. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture. Applied Environmental Microbiology, 64(2), pp.520–525. doi: 10.1128/AEM.64.2.520-525.1998.

Barre, J.T. et al., 1997. A bioactive triterpene from Lantana camara. Phytochemistry, 45(2), pp.321–324. doi: 10.1016/S0031-9422(96)00805-9.

Bhandari, S. et al., 2008. Trichosanthes tricuspidata: a medicinally important plant. Trees for Life Journal, 3(5), pp.1–4.

Bhardwaj, S. & Rashmi, 2015. Phytochemical evaluation and antibacterial potential of Trichosanthes tricuspidata root extracts against human pathogenic bacteria. International Journal of Life Science and Pharma Research, 5(2), pp.32–44.

Duyfjes, B.E.E. & Pruesapan, K., 2004. The genus Trichosanthes L. (Cucurbitaceae) in Thailand. Thai Forest Bulletin (Botany), 32, pp.76–109.

Febrianti, N. et al., 2016. Comparison of antioxidant activity of papaya (Carica papaya L.) and guava fruit (Psidium guajava L.). Prosiding Seminar Nasional II Kerjasama Prodi Pendidikan FKIP dengan Pusat Studi Lingkungan dan Kependudukan (PSLK) Universitas Muhammadiyah Malang, pp.1217–1224.

Ghasemi, K. et al., 2009. Antioxidant activity, phenol, and flavonoid contents of 13 citrus species peels and tissue. Pak. J. Pharm. Sci., 22(3), pp.277–281.

Gupta, A. & Pandey, K., 2020. Antibacterial lead compounds and their targets for drug development Chapter 18. In Phytochemicals as Lead Compounds for New Drug Discovery, edited by Egbuna, C., Kumar, S., Ifemeje, J.C., Ezzat, S.M., Kaliyaperumal, S. Elsevier B.V. pp.275–292. doi: 10.1016/B978-0-12-817890-4.00018-4.

Hosu, A. et al., 2014. Analysis of total phenolic, flavonoids, anthocyanins, and tannins content in Romanian red wines: prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chemistry, 150, pp.113–118. doi: 10.1016/j.foodchem.2013.10.153.

Kanchanapoom, T. et al., 2002. Cucurbitane, hexanorcucurbitane and octanorcucurbitane glycosides from fruits of Trichosanthes tricuspidata. Phytochemistry, 59(2), pp.215–228. doi: 10.1016/S0031-9422(01)00430-7.

Kasai, R. et al., 1999. Cycloartane glycosides from Trichosanthes tricuspidata. Phytochemistry, 51(6), pp.803–808. doi: 10.1016/S0031-9422(99)00078-3.

Kavitha, R., 2017. Pharmacochemical characterization of various extracts of leaf and fruit of Trichosanthes dioica plant. International Journal of Pharmacy and Biological Sciences, 7(4), pp.95–105.

Kulandaivel, S. et al., 2013. Anti-hyperglycemic activity of Trichosanthes tricuspidata root extract. Bangladesh J. Pharmacol., 8, pp.305–310. doi: 10.3329/bjp.v8i3.15584.

Kumar, N. et al., 2012. Trichosanthes dioica Roxb.: an overview. Pharmacognosy reviews, 6(11), pp.61. doi: 10.4103/0973-7847.95886.

Kumar S. et al., 2014. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Research Notes, 7(560), pp.1–9.

Mai, L.P. et al., 2002. New cytotoxic cucurbitacins from the pericarps of Trichosanthes tricuspidata fruits. Natural product letters,16(1), pp.15–19. doi: 10.1080/1057563029001/4755.

Maldoni, B., 1991. Alkaloids: isolation and purification. Journal of chemical education, 68(8), pp.700. doi: 10.1021/ed068p700.

Marrelli, M. et al., 2016. Effects of saponins on lipid metabolism: a review of potential health benefits in the treatment of obesity. Molecules, 21(10), pp.1404. doi: 10.3390/molecules21101404.

Marsetya, Y. R. et al., 2009. Antioxidant activity, phenolic and flavonoid contents of snake gourd (Trichosanthes anguina) extract. Biofarmasi Journal of Natural Product Biochemistry, 7(2), pp.77–86. doi: 10.13057/biofar/f070203.

Molyneux, P., 2004. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol., 26(2), pp.211–219.

Orak, H.H. et al., 2012. Comparison of antioxidant activities of juice, peel, and seed of pomegranate (Punica granatum L.) and inter-relationships with total phenolic, tannin, anthocyanin, and flavonoid contents. Food Sci. Biotechnol., 21(2), pp.373–387. doi: 10.1007/s10068-012-0049-6.

Rajasekaran, A. & Periyasamy, M., 2012. Hepatoprotective effect of ethanolic extract of Trichosanthes lobata on paracetamol-induced liver toxicity in rats. Chinese medicine, 7(1), pp.1–6.

Rice-Evans, C.A. et al., 1997. Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), pp.152–159. doi: 10.1016/S1360-1385(97)01018-2.

Rugayah, R. & Darnaedi, D., 2004. The Somatic Chromosome Number of Some Species Trichosanthes. Floribunda, 2(6), pp.155–160.

Singh, J. et al., 2016. Phenolic content and antioxidant capacity of selected cucurbit fruits extracted with different solvents. Journal of Nutrition & Food Sciences, 6(6), pp.1–8. doi: 10.4172/2155-9600.1000565.

Singh, S.K. & Prakash, V., 2013. Screening of antioxidant activity and phytochemicals strength of some herbal plants. International Journal of Pharmacy and Pharmaceutical Sciences, 5(3), pp.296–300.

Tripathy, P.K. et al., 2014. Validation of traditional therapeutic claims through phytochemical screening and antibacterial assessment: A study on mahakaal (Trichosanthes tricuspidata L.) from Similipal Biosphere Reserve Forest, Odisha, India. Algerian Journal of Natural Products, 2(3), pp.85–97.

Van Acker, S.A. et al., 1996. Structural aspects of antioxidant activity of flavonoids. Free Radical Biology and Medicine, 20(3), pp.331–342.

Wangensteen, H. et al., 2004. Antioxidant activity in extracts from coriander. Food Chemistry, 88(2), pp.293–297. doi: 10.1016/j.foodchem.2004.01.047.

Widyasanti A. et al., 2016. Antioxidant activities of white tea extract (Camellia sinensis) using DPPH (2,2 diphenyl-1-picrylhydrazyl) method. Fortech, 1(1), pp.1–9.

Windadri, F.I. et al., 2006. Pemanfaatan tumbuhan sebagai bahan obat oleh masyarakat lokal Suku Muna di Kecamatan Wakarumba, Kabupaten Muna, Sulawesi Tenggara. Biodiversitas, 7(4), pp.333–339.

Xu, Y. et al., 2012. Chemical constituents from Trichosanthes kirilowii Maxim. Biochemical Systematics and Ecology, 43, pp.114–116. doi: 10.1016/j.bse.2012.03.002.

Yuvarajan, R. et al., 2015. Photoscopic characterization of green synthesized silver nanoparticles from Trichosanthes tricuspidata and its antibacterial potential. Journal of Photochemistry and Photobiology B: Biology, 149, pp.300–307. doi: 10.1016/j.jphotobiol.2015.04.032.


Article Metrics

Abstract views : 445 | views : 572


  • There are currently no refbacks.

Copyright (c) 2022 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)