Astaxanthin-Producing Microalgae Identification Using 18S rRNA : Isolates from Bangkalan Mangrove Waters and Sowan Tuban Northern Waters, East Java, Indonesia

https://doi.org/10.22146/jtbb.64882

Dini Ermavitalini(1*), Siska Yulia Rukhmana(2), Thalita Meidina(3), Leonardo Pascalis Dimas Cahyo Baskoro(4), Triono Bagus Saputro(5), Ni’matuzahroh Ni’matuzahroh(6), Hery Purnobasuki(7)

(1) Department of Biology , Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember.
(2) Alumni of Department of Biology, Faculty of Science and Data Analitycs, Institut Teknologi Sepuluh Nopember.
(3) Alumni of Department of Biology, Faculty of Science and Data Analitycs, Institut Teknologi Sepuluh Nopember.
(4) Alumni of Department of Biology, Faculty of Science and Data Analitycs, Institut Teknologi Sepuluh Nopember.
(5) Department of Biology , Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember.
(6) Departement of Biology, Faculty of Science and Technology, Universitas Airlangga.
(7) Departement of Biology, Faculty of Science and Technology, Universitas Airlangga.
(*) Corresponding Author

Abstract


Microalgae are a group of micro-sized photosynthetic organisms that range from prokaryotic cyanobacteria to eukaryotic algae. Microalgae are widely used as a source  of natural food, cosmetic ingredients, food ingredients, and a source of pigments. This study aims to identify species of four microalgae isolates named B1, B2, B3, and S2 from Bangkalan Mangrove Waters and Sowan Tuban Northern Waters, and to determine their astaxanthin pigment concentration under 1 M NaCl. Species identification was carried out through a molecular approach by utilization of an 18S rRNA gene marker. A quantitative test of astaxanthin concentration was carried out by spectrophotometric analysis. Molecular identification results show that isolates B1 and B3 are closely related to Chlorella sp., while isolates B2 and S2  are closely related to Picochlorum maculatum. Moreover, under salinity stress condition of 1 M NaCl shown a significant decrement of astaxanthin production compared to the control treatment. At 1 M NaCl, the astaxanthin content of isolate B1 was 4x10-5 mgL-1, isolate B2 was 2x10-5 mgL-1, isolate B3 was 1x10-5 mgL-1, and isolate S2 was 6x10-6 mgL-1. All in all, isolate S2 has the highest astaxanthin among the other isolates at normal conditions, while under salt stress regime, isolate B1 shown to be the best source for astaxanthin.

 


Keywords


Astaxanthin, Bangkalan Mangrove Waters, Chlorella sp., Picochlorum maculatum Sowan Tuban Northern Waters

Full Text:

PDF


References

Arisandi, A. et al., 2011. Pengaruh Salnitas Yang Berbeda Terhadap Morfologi, Ukuran dan Jumlah Sel, Pertumbuhan serta Rendemen Keraginan Kappaphycus alvarezii. Jurnal Ilmu Kelautan, 16(3), pp.143-150.

Agustini, N.W.S., Afriastini, M. & Maulida, Y., 2012. Potential of Fatty Acid from Microalgae Nannochloropsis sp. as Antioxidant and Antibacterial; Proceeding of Seminar Nasional XI Pendidikan Biologi FKIP. Universitas Sebelas Maret Surakarta, Surakarta.

Azzahidah, A. & Ermavitalini, D., 2016. Isolasi, Karakterisasi dan Seleksi Mikroalga yang Berpotensi sebagai Bahan Baku Biodiesel dari Perairan Wonorejo Selatan,  Proceeding of Seminar Nasional Biodiversitas VI, Airlangga University.

Biswal, B. et al., 2011. Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Curr.Sci, 101, pp.47–56.

Chaves, M.M., Flaxes, J. & Pinheiro, C., 2009. Photosynthesis under drought and salt stress regulation mechanism from whole plant to cell. Annals of Botany, 103(4), pp.551–556.

Chen, J., Wei, D. & Pohnert, G., 2017.  Rapid Estimation of Astaxanthin and the Carotenoid-to-Chlorophyll Ratio in the Green Microalga Chromochloris zofingiensis Using Flow Cytometry. Marine Drugs, 15(7), 231.

Coates, C.R., Trentacoste, E. & Gerwick, W.H., 2013, ‘Bioactive and novel chemicals from microalgae’, in A. Richmond A, Hu Q (eds.), Handbook of microalgal culture, John Wiley & Sons, New York.

Collins, A.M. et al., 2011. Carotenoid Distribution in Living Cells of Haematococcus pluvialis (Chlorophyceae). PLoS One, 6(9), e24302.

Demmig-Adams, B., Gilmore, A.M. & Adams, W.W., 1996. Carotenoids 3: In vivo function of carotenoids in higher plants. FASEB Journal, 10(4), pp.403–412.

Dowling, D.K. & Simmons, L.W., 2009. Reactive oxygen species as universal constraint in life-history evolution. Proc. R. Soc. B., 276(1663). pp.1737–1745.

Duong, V.T.Y. et al., 2012. Microalgae Isolation and Selection for Prospective Biodiesel Production. Energies, 5, pp.1835-1849.

Elfiza, W.N., Abdi, D. & Nasril, N., 2019. Penapisan mikroalga penghasil karotenoid serta studi pengaruh stress nitrogen dan fosfor terhadap produksi  Beta karoten pada mikroalga Oocystis sp. JPB Kelautan dan Perikanan, 14(1), pp.9-20.

Endrawati, H. & Riniatsih, I., 2013. Kadar Total Lipid Mikroalga Nannochloropsis oculate yang Dikultur Dengan Suhu yang Berbeda. Buletin Oseanografi Marina, 1, pp.25-33.

Erlina, A., 2007. Produksi Pakan Hidup; Materi Pelatihan Pembenihan Udang. Laboratorium Pakan Alami Balai Besar Pengembangan Budidaya Air Payau Jepara, Jepara.

Guerin, M., Huntley, M.E. & Olaizola, M., 2003. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol, 21, pp. 210-216.

Guiry, M.D., 2012. How Many Species of Algae Are There? Journal of Phycology, 48, pp.1057–1063.

Habib, S.H., Kausar, H. & Saud, H.M., 2016 .Plant growth- promoting Rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes. Biomed.Res.Int., 2016, 6284547.

Hajibabaei, M. et al., 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet, 1(1), pp. 1-6.

Han, D., Yantao, L. & Qtang, H., 2013.  Astaxanthin in microalgae: pathways, functions and biotechnological implications. Algae, 28(2), pp.131-147.

Hebert, P.D.N. et al., 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B., 270, pp.313-321.

Henley, W.J. et al., 2004. Phylogenetic analysis of the ‘Nannochloris-like’algae and diagnoses of Picochlorum oklahomensis gen. et sp. nov.(Trebouxiophyceae, Chlorophyta). Phycologia, 43(6), pp.641–652

Henriquez, M., Silva, A. & Rocha, J., 2007. Extraction and Quantification of Pigments from a Marine Microalga: A Simple and Reproducible Method. FORMATEX, 1, pp.586-593.

Hossain, M.S. & Karl, J.D., 2016. Turning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under salinit stress. Frontiers in plant science, 7, 548.

Isnansetyo, A. & Kurniastuty, 1995, Teknik Kultur Pytoplankton dan Zooplankton Pakan Alami untuk Pembenihan Organisme Laut, Kanisius, Yogyakarta.

Jajoo, A., 2013. ‘Changes in photosystem II in response to salt stress’ in P. Ahmad, M.M. Azooz, M.N.V. Prasad (eds), Ecophysiology and Responses of Plants under Salt Stress, Springer. New York.

Jaleel, C.A. et al., 2009. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. ActaPhysiol.Planta., 31, pp.427–436.

Lasabuda, R., 2013. Pembangunan Wilayah Pesisir dan Lautan Dalam Perspektif Negara Kepulauan Republik Indonesia. Jurnal Ilmiah Platax, 1(2), pp.92-101.

Leya, T. et al., 2009. Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol. Ecol, 67, pp.432-443.

Li, F. et al., 2019. Differences between Motile and Nonmotile celss of Haematococcus pluvialis In the production of Astaxanthin at different light Intensities. Marine drugs, 17(39).

Lichtenthaler, H.K., 1987. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148, pp. 350-382.

Lorenz, R.T. & Cysewski, G.R., 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol, 18(4), pp.160-167.

Ma, R.Y.N. & Chen, F., 2001. Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochem, 36, pp.1175-1179.

Ma, X. et al., 2017. Salicylic Acid Alleviates the Adverse Effects of Salt Stress on Dianthus superbus (Caryophyllaceae) by Activating Photosynthesis, Protecting Morphological Structure, and Enhancing the Antioxidant System. Frontiers in Plant Science, 8, 600.

Miller, G. et al., 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ, 33(4), pp.453–467.

Moller, I.M., Jensen, P.E. & Hansson, A., 2007. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol., 58. pp.459–481.

Mulders, K.J.M. et al., 2015. Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: A carotenoid metabolism study. J. Appl. Phycol., 27, pp.125–140.

Mustafa, H., Rachmawati, I. & Udin, Y., 2016. Pengukuran Konsentrasi dan Kemurnian DNA Genom Nyamuk. Jurnal Vektor Penyakit, 10(1), pp.7-10.

Noor, Y.R., Khazali, M. & Suryadiputra, I.N.N., 1999. Panduan Pengenalan Mangrove di Indonesia. PHKA/WI-IP, Bogor.

Orosa, M. et al., 2000. Production and analysis of secondary carotenoids in green algae. J. Appl. Phycol, 12(3), pp.553-556.

Pelah, D., Amnon, S. & Ephrain, C., 2004. The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World Journal of Microbiology & Biotechnology, 20, pp.483–486.

Perumal, P. et al., 2012. Isolation and Culture of Microalgae; Workshop on Advances in Aquaculture Technology. Bharathidasan University, Tamil Nadu.

Pratama, A.J. & Laily, A.N., 2015. Analisis Kandungan Klorofil Gandasuli (Hedychium garderianum Shephard ex Ker-Gawl) pada Tiga Daerah Perkembangan Daun yang Berbeda; Proceeding of Seminar Nasional Konservasi dan Pemanfaatan Sumber Daya Alam. Sebelas Maret University, Surakarta.

Qin, S., Liu, G.X. & Hu, Z.Y., 2008. The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochem, 43, pp.795-802.

Remias, D. et al., 2010. Physiological and morphological processes in the alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma, 243, pp.73-86.

Rismiarti, A., Kusumaningrum, H.P. & Zainuri, M., 2016. Karakterisasi Dan Identifikasi Molekuler Fusan Hasil Fusi Protoplas Interspesies Chlorella pyrenoidosa dan Chlorella vulgaris Menggunakan 18SrDNA. Jurnal Bioma : Berkala Ilmiah Biologi, 18(2), pp.30-40.

Safitri, R., 2018, ‘Isolasi Bakteri Penghasil Anzim Protease Bacillus thuringiensis IRODI pada Oncom Merah Pasca Fermentasi 24 Jam’, Proceeding of Seminar Nasional Edusaintek,  Universitas Muhammadiyah Semarang, Semarang.

Saha, J., 2015. Polyamines as redox homeostasis regulators during salt stress in plants. Frontiers in Environmental Science, 3, 21.

Sambrook, J., Fritsch, E.F. & Maniatis, T., 1989, Molecular Cloning: A Laboratory Manual. 2nd ed, Cold Spring Harbor Laboratory Press, New York.

Saputro, T.B. et al., 2019. Isolation of high lipid content microalgae from Wonorejo river, Surabaya, Indonesia and its identification using rbcL marker gene. Biodiversitas, 20(5), pp.1380-1388.

Scheffler, J., 2007. Underwater Habitats. Illumin, 9(4).

Sedjati, S. et al., 2019. Chlorophyll and Carotenoid Content of Dunaliella salina at Various Salinity Stress and Harvesting Time. Proceeding of 4th International Conference on Tropical and Coastal Region Eco Development, IOP Conf. Ser.: Earth Environ. Sci., 246, 012025.

Shang, C. et al., 2018. The Responses of Two Genes Encoding Phytoene Synthase (Psy) and Phytoene Desaturase (Pds) to Nitrogen Limitation and Salinity up-Shock with Special Emphasis on Carotenogenesis in Dunaliella parva. Algal Research Journal, 32, pp.1–10.

Shapiguzov, A., 2012. ROS talk how the apoplast, the chloroplast, and the nucleus get the message through. Frontiers in Plant Science, Vol 27(3), 292.

Silva, E.N., 2011. Salt stress induced damages on the photosynthesis of physic nut young plants. Scientia Agricola (Piracicaba Braz.), 68(1), pp.62–68.

Sulardiono, B., Hutabarat & Djunaedi, A., 2015. Buku Ajar Planktonologi. Universitas Diponegoro, Semarang.

Suparman, 2012. Marka molekuler dalam identifikasi dan analisis kekerabatan tumbuhan serta implikasinya bagi mata kuliah genetika. Jurnal bioedukasi, 1(1).

Thao, T.Y. et al., 2017. Isolation and Selection of Microalgal Strains from Natural Water Sources in Viet Nam with Potential for Edible Oil Production. Marine Drugs, 15, p.194

Tsai, Y.C. et al., 2019. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biology, 19, 403.

Wang, N. et al., 2018. Identification of Salt Stress Responding Genes Using Transcriptome Analysis in Green Alga Chlamydomonas reinhardtii. International Journal of Molecular Sciences, 19(11), 3359.

Widayat & Hadiyanto, 2015. Pemanfaatan Limbah Cair Industri Tahu Untuk Produksi Biomassa Mikroalga Nannochloropsis sp. Sebagai Bahan Baku Biodiesel. Jurnal Reaktor, 15(4), pp.253-260.

Yanuhar, U., 2016, Mikroalga Laut Nannochloropsis oculate, UB Press, Malang.

Zawislak, G. & Renata, N.W., 2014. Evaluation of the yield and biological value of tarragon (Artemisia dracunculus L.) in  the bunch harvest cultivation. Acta Sci. Pol., Hortorum Cultus, 13(4), pp.185-198.

Zulfahmi, 2013. Penanda DNA untuk analisis genetik tanaman. Jurnal Agroteknologi, 3(2).

 



DOI: https://doi.org/10.22146/jtbb.64882

Article Metrics

Abstract views : 100 | views : 126

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)