Morphological, Histological, and Protein Profiling of Tea Embryo Axis at Early Stage of Culture

Ratna Dewi Eskundari(1), Taryono Taryono(2*), Didik Indradewa(3), Yekti Asih Purwestri(4)

(1) Doctoral Program of Biotechnology, The Graduate School of Universitas Gadjah Mada; Biology Education Study Program, Faculty of Teacher Training and Education, Universitas Veteran Bangun Nusantara
(2) Faculty of Agriculture, Universitas Gadjah Mada; Agrotechnology Innovation Centre
(3) Faculty of Agriculture, Universitas Gadjah Mada
(4) Faculty of Biology, Universitas Gadjah Mada
(*) Corresponding Author


Tissue culture is an alternative choice of plant propagation either through somatic embryogenesis or in vitro organogenesis techniques. TRI2025 tea clone has been cultured successfully, however, the scientific information related to morphology, histology, and protein profile at an early event of culturing time has not been reported yet. This study aimed to determine the differences between those pathways, in the context of morphology, histology, and protein profile. The explants were the embryo axis of TRI2025 tea clone cultured on two different induction mediums; somatic embryogenesis and in vitro organogenesis induction medium. The results showed that most of the explants cultured on A medium developed to be a globular-like structure at 11-day after culture (DAC), while all explants cultured on B medium showed the initiation stage of in vitro organogenesis. Histological analysis showed meristem reconstruction at shoot apical meristem (SAM) and root apical meristem (RAM) at 11-DAC at explants cultured on B medium, while explants cultured on A medium showed callusing at 21-DAC. Protein profile analysis using SDS-PAGE showed protein bands of 54 and 81 KDa that only appeared at explants cultured on A medium start from 14-DAC, and those two protein bands thought to be a differentiator at the early stages of the two tissue culture techniques. Thus, these parameters can be used as early detection for plant tissue culture, especially in tea.



auxin; Camellia sinensis; cytokinin; micropropagation; tissue culture

Full Text:



Akula, A. & Dodd, W.A., 1998. Direct somatic embryogenesis in a selected tea clone, ‘TRI-2025’ (Camellia sinensis (L.) O. Kuntze) from nodal explants. Plant Cell Reports, 17(10), pp.804–809.

Ali, A.M.A. et al., 2016. Callus induction, direct, and indirect organogenesis of ginger (Zingiber officinale Rosc). African Journal of Biotechnology, 15, pp.2106-2114.

Aslam, J. et al., 2011, “Somatic embryogenesis, scanning electron microscopy,histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars”, Saudi Journal of Biolological Sciences, 18, pp.369-380.

Bassuner, B.M. et al., 2006. Auxin and root initiation in somatic embryos of Arabidopsis. Plant Cell Reports, 26(1), pp.1-11.

Biasi, L. A. et al., 2000. Organogenesis from internodal segments of yellow passion fruit. Scientia Agricola, 57(4), pp.661-665.

Bowman, J.L., & Floyd, S.K., 2008. Patterning and polarity in seed plant shoots. Annual Review of Plant Biology, 59, pp.67–88.

Bradford, MM., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, pp.248-254.

Bradley, D.E. et al., 2001. Scanning electron microscopic study on in vitro somatic embryogenesis of perennial ryegrass and tall fescue. International Turfgrass Society Research Journal, 9, pp.146-151.

Braybrook, S. A. et al., 2006. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proceedings of the National Academics of United States of America, 103, pp.3468–3473.

Carvalho, M.A.F. et al., 2014. Induction and morpho-ultrastructural analysis of organogenic calli of a wild passion fruit. Brazilian Archives of Biology and Technology, 57(6), pp.851-859.

Chen, L. et al., 2016. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. Journal of Experimental Botany, 67(14), pp.4273-4284.

Crane, K. E., & Ross, C. W., 1986. Effects of wounding on cytokinin activity in cucumber cotyledons. Plant physiology, 82(4), pp.1151-1152.

Dello Ioio, R.D. et al., 2008. Emerging role of cytokinin as a regulator of cellular differentiation. Current Opinion in Plant Biology, 11(1), pp.23-27.Ekayanti, M. et al., 2017. Pharmacognostic and phytochemical standardization of white tea leaf (Camellia sinensis L. Kuntze) ethanolic extracts. Pharmacognosy Journal, 9(2), pp.221-226.

Eskundari, R.D. et al., 2018. Induction of indirect somatic embryogenesis on embryonic axis of TRI2025 tea clone. Journal of Agricultural Science, 10(10), pp.224-230.

Eskundari, R.D. et al., 2019. Protein profile of tissue culture of TRI2025 tea clone. Biosaintifika, 11(1), pp.8-14.

Farida, F.I. & Muslihatin, W., 2017. Induksi perakaran teh (Camellia sinensis L.) secara in vitro pada klon yang berbeda. Jurnal Sains dan Seni ITS, 6(2), pp.74-78.

Fernando, J. A. et al., 2007. New insights into the in vitro organogenesis process: the case of Passiflora. Plant cell, tissue and organ culture, 91(1), pp.37-44.

Gallois, J.L. et al., 2004. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Gene Development, 18, pp.375–380.

Gonbad, R.A. et al., 2014. Influence of cytokinins in combination with GA3 on shoot multiplication and elongation of tea clone Iran 100 (Camellia sinensis (L.) O. Kuntze). The Scientific World Journal, 2014, 943054.

Gordon, S.P. et al., 2007. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development, 134, pp.3539-3548.

Gunasekare, M.T.K. & Evans, P. K., 2000. In vitro shoot organogenesis in callus derived from stem tissue of tea (Camellia sinensis L.). S.L.J. Tea Science., 66(1-2), pp.16-26.

Hakan-Mo, L. et al., 1996. Secretion of spesific extracellular proteins by somatic embryos of Picea abies is dependent on embryo morphology. Annals of Botany, 77, pp.143-152.

Han, H., et al., 2014. Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi x Lrix olgensis). BMC Plant Biology, 14, pp.305-317.

Haq, M.S. & Mastur, A.I., 2018. Pertumbuhan benih hasil setel sambung beberapa klon unggul teh. Jurnal Tanaman Industri dan Penyegar, 5(3), pp.105-112.

Hasbullah, N.A. et al., 2008. Growth optimization and organogenesis of Gerbera jamesonii Bolus ex. Hook f. in vitro. Pakistan Journal of Biological Scieces, 11(11), pp.1449-1454.

Horstman, A., Berner, M. & Boutilier, K., 2016, “A transcriptional view on somatic embryogenesis”, Regeneration, 4, pp.201–216.

Ikeuchi, M. et al., 2016. Plant regeneration: cellular origins and molecular mechanisms. Development, 143, pp.1442-1451.

Imin, N. et al., 2005. Proteomic Analysis of Somatic Embryogenesis in Medicago truncatula. Explant Cultures Grown under 6-Benzylaminopurine and 1-Naphthaleneacetic Acid Treatments. Plant Physiology, 137, pp.1250–1260.

Indonesian Tea and Quinine Research Center, 2006, Petunjuk kultur teknis tanaman teh. Lembaga Riset Perkebunan Indonesia, Pusat Penelitian Teh dan Kina.

Iwase, A. et al., 2011. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology, 21, pp.508–514.

Jensen, W.A., 1962, Botanical Histochemistry: Principles and Practice, W.H. Freeman and Co., Berkeley, USA.

Joyner, E.Y. et al., 2010. Callus induction and organogenesis in soybean [Glycine max (L.) Merr.] cv. Pyramid from mature cotyledons and embryos. The Open Plant Science Journal, 4, pp.18-21.

Kaviani, B, 2013. Somatic embryogenesis and plant regeneration from embryonic axes and cotyledons explants of tea (Camellia sinenis L.). Journal of Ornamental Plants, 3, pp.33-38.

Koyuncu, F., & Balta, F., 2004. Adventitious root formation in leaf-bud cutting of tea (Camellia sinensis L.). Pakistan Journal of Botany, 36, pp.763-768.

Kumar, C.H.N.P. et al., 2014. Stimulation of Callogenesis from Anthers of Chinery and Cambod Tea (Camellia sp.) Clones. International Journal of Advanced Biotechnology and Research, 5(3), pp.364-370.

Kyozuka, J., 2007. Control of shoot and root meristem function by cytokinin. Current Opinion in Plant Biology, 10, pp.442-446.

Ledwon, A. & Gaj, M. D., 2009. LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells. Plant Cell Reports, 28(11), pp.1677-1688.

Li, Q. et al., 2011. Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar. Proteome Science, 9, pp.44-55.

Li, Q. et al., 2015. A comparative proteomic analysis of the buds and the young expanding leaves of the tea plant (Camellia sinensis). International Journal of Molecular Sciences, 16, pp.14007-14038.

Liang, Y. et al., 1993. Effect of Maofeng tea processing on leaf trichomes of tea (Camellia sinensis L). Journal of the Science of Food and Agriculture, 62(1), pp.35-39.

Lopez, H.G.M. et al., 2012. Evaluation of the extracellular proteome profile during the somatic embryogenesis process of Coffea spp. Journal of Mexicans Chemical Society, 56(1), pp.72-79.

Mahalakshmi, A. et al., 2003. Rapid induction of somatic embryogenesis in leaf explants of wheat (Triticum aestivum). Plant Biotechnology, 20, pp.267-273.

Maniatis, T. et al., 1982, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor.

Márquez-López, R. E. et al., 2018. Localization and transport of indole-3-acetic acid during somatic embryogenesis in Coea canephora. Protoplasma, 255(2), pp.695–708.

Matsuo, N., 2011. Arabidopsis ENHANCER OF SHOOT REGENERATION (ESR) 1 and ESR2 regulate in vitro shoot regeneration and their expressions are differentially regulated. Plant Science, 181(1), pp.39-46.

Mendez, W.M. et al., 2009. Ultrastructure and histology of organogenesis induced from shoot tips of maize (Zea mays, Poaceae). Revista de Biologia Tropical, 57(Suppl. 1), pp.129-139.

Méndez-Hernández, H. A. et al., 2019. Signaling overview of plant somatic embryogenesis. Frontiers in Plant Science, 10(77).

Mitrowihardjo, S. et al., 2012. Kandungan katekin dan kualitas (warna air seduhan, flavor, kenampakan) enam klon teh (Camellia sinensis (L.) O. Kuntze) di ketinggian yang berbeda. Agritech, 32(2), pp.199-206.

Mondal, T. et al., 1998. Micropropagation of tea (Camellia sinensis (L.) O. Kuntze) using Thidiazuron. Plant Growth Regulators, 26, pp.57-61.

Munivenkatappa, N. et al., 2018. Variations in quality constituents of green tea leaves in response to drought stress under south Indian condition. Scientiae Horticulturae, 233, pp.359-369.

Ogita, S. et al., 2004. Histological analysis in shoot organogenesis from hypocotyl explants of Kandelia candel (Rhizophoraceae), Journal of Plant Research, 117(6), pp.457-464.

Putra, R.M. et al., 2015, ‘Pengaruh jenis klon dan konsentrasi BAP terhadap multiplikasi tanaman teh secara in vitro’, Prosiding Seminar Nasional Hasil Penelitian Pertanian 2015, Fakultas Pertanian Universitas Gadjah Mada, pp.222-227.

Qin, M. et al., 2020. Genome-wide identification and analysis on YUCCA gene family in Isatis indigotica Fort. and IiYUCCA6-1 functional exploration. International Journal of Molecular Sciences, 21(6), p.2188.

Qosim, W.A. et al., 2013. Indirect organogenesis and histological analysis of Garcinia mangostana L. Asian Journal of Plant Science, 12(6-8), pp.279-284.

Raghavan, V., 2004. Role of 2, 4-dichlorophenoxyacetic acid (2, 4‐D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2, 4-D. American Journal of Botany, 91(11), pp.1743-1756.

Ranaweera, K. K. et al., 2013. Ex vitro rooting: a low cost micropropagation technique for Tea (Camellia sinensis (L.) O. Kuntz) hybrids. Scientia Horticulturae, 155, pp.8-14.

Rani, R. et al., 2005. Changes in protein profiles associated with somatic embryogenesis in peanut. Biologia Plantarum 49, pp.347-354.

Raven, P.H. & Johson, G.B., 2009, Biology Ninth Edition, USA: McGraw-Hill.

Reinhardt, D. et al., 2003. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development, 130(17), pp.4073-4083.

Sandal, I. et al., 2005. Gradual depletion of 2,4-D in the culture medium for indirect shoot regeneration from leaf explants of Camellia sinensis (L.) O. Kuntze. Plant Growth Regulators, 47(4), pp.121–127.

Sarkar, N.K. et al., 2013. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperones, 18, pp.427-437.

Sass, J.E., 1958. Botanical Microtechnique. The lowa State University Press, Iowa: xi + p.228.

Scofield, S. et al., 2013. The Arabidopsis homeobox gene SHOOT MERISTEMLESS has cellular and meristem organisational roles with differential requirements for cytokinin and CYCD3 activity. Plant Journal, 75, pp.53-66.

Sena, G. et al., 2009. Organ regeneration does not require a functional stem cell niche in plants. Nature, 457(7233), pp.1150-1153.

Seran, H.T. et al., 2006. Direct somatic embryogenesis from explants obtained from in vitro germinated embryonic axes of Camellia sinensis (L.) O. Kuntze. Journal Horticultural Science and Biotechnology, 81(5), pp.883–890.

Sung, Z. & Okimoto, R., 1981. Embryonic proteins in somatic embryos of carrot. Proc., Natl., Acad., Sci., USA, (78), pp.3683-3687.

Tahardi, J.S. et al., 2003. Enhancement of somatic embryo development and planlet recovery in Camelia sinensis by temporary liquid immersion. Jurnal Bioteknologi Pertanian, 8, pp.1-7.

Usman, M.G. et al., 2017. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. Biotechnology Genetic Engineering Reviews, 33, pp.26-39.

Utami, E.S.W. et al., 2007. Protein synthesis during somatic embryogenesis of moon orchid Phalaenopsis amabilis (L.) Bl. Biodiversitas Journal of Biological Diversity, 8(3), pp.188-191.

Wafa, S.N. et al., 2016. Organogenesis and ultrastructural features of in vitro grown Canna indica L. BioMed Research International, 2016, 2820454.

Werner, T. et al., 2008. Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. Journal of Experimental Botany, 59(10), pp.2659-2672.

Widhianata, H. & Taryono. 2019. Organogenesis responses of tea (Camellia sinensis (L.) O. Kuntze) var. assamica and sinensis. AIP Conference Proceedings, 2099, 020026-1-020026-9.

Wojcikowska, B. et al., 2013. LEAFYCOTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta, 238, pp.425–440.

Yi, W. S. et al. 2011. Investigation of morphological change of green tea polysaccharides by SEM and AFM. Scanning, 33(6), pp.450-454.

Zheng, Y. et al., 2009. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell, 21, pp.2563-2577.

Zhou, L. et al., 2014. Exogenus abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress. Horticultural Research, 1, pp.14029-14038.

Zhou, Q. et al., 2016. Proteomic analysis of tea plants (Camellia sinensis) with purple young shoots during leaf development. Plos One, 12(5), e0177816.


Article Metrics

Abstract views : 1394 | views : 1360


  • There are currently no refbacks.

Copyright (c) 2021 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)