Postpartum Serum Non-Esterified Fatty Acids, Milk Yield, Feed Intake and Plasma Natural Antibodies in Cows with Subclinical Mastitis

https://doi.org/10.22146/jsv.105442

Novi Mayasari Mayasari(1*), Asri Wulansari(2), Muhammad Rifqi Ismiraj(3), Indra Firmansyah(4)

(1) Fakultas Peternakan, Universitas Padjadjaran
(2) Animal Husbandry Program PSDKU Pangandaran, Faculty of Animal Husbandry, Universitas Padjadjaran, Pangandaran
(3) Animal Husbandry Program PSDKU Pangandaran, Faculty of Animal Husbandry, Universitas Padjadjaran, Pangandaran
(4) Department of Agricultural Engineering and Biosystems, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, West Java
(*) Corresponding Author

Abstract


Somatic cell count (SCC) is commonly used as an indicator of subclinical mastitis, yet its association with postpartum performance, non-esterified fatty acid (NEFA) concentration, and immune status remains unclear. This study evaluated 18 Holstein Friesian cows grouped by milk SCC: low (<160,000 cells/ml), moderate (160,000–400,000 cells/ml), or high (>400,000 cells/ml). Daily milk production, feed intake, plasma NEFA levels, and natural antibodies (IgG and IgM) against keyhole limpet hemocyanin (KLH) were measured. ANOVA was used to detect differences among groups. Despite consistent feeding regimens and standardized sampling, cows with high SCC (4.79) tended to exhibit lower IgG titers than those with low (6.16) and moderate (6.42) SCC, suggesting reduced immune function under higher SCC levels. However, milk yield, feed intake, IgM titers, and postpartum NEFA levels showed no significant differences among the three groups. These findings indicate that elevated SCC may impair systemic IgG antibody responses but exerts limited effects on production and metabolic parameters. In conclusion, while SCC appears to influence immune status, its relationship with NEFA concentrations, milk production, and feed intake is less pronounced under these experimental conditions.

Keywords


Dairy cows; Natural Antibodies (Nabs); Non-Esterified Fatty Acids (NEFA); Somatic Cell Counts (SCC)

Full Text:

PDF


References

Adewuyi, A. A., Gruys, E., & van Eerdenburg, F. J. C. M. (2005). Non esterified fatty acids (NEFA) in dairy cattle. A review. Veterinary Quarterly, 27(3), 117–126. https://doi.org/10.1080/01652176.2005.9695192 Aernouts, B., Adriaens, I., Diaz-Olivares, J., Saeys, W., Mäntysaari, P., Kokkonen, T., Mehtiö, T., Kajava, S., Lidauer, P., Lidauer, M. H., & Pastell, M. (2020). Mid-infrared spectroscopic analysis of raw milk to predict the blood nonesterified fatty acid concentrations in dairy cows. Journal of Dairy Science, 103, 6422–6438. https://doi.org/10.3168/jds.2019-17952 Avrameas, S. (1991). Natural autoantibodies: From “horror autotoxicus” to “gnothi seauton”. Immunology Today, 12, 154–159. https://doi.org/10.1016/S0167-5699(05)80045-3 Blum, J. W., Bruckmaier, R. M., Vacher, P.-Y., ünger, A. M., & Jans, F. (2000). Twenty-Four-Hour Patterns of Hormones and Metabolites in Week 9 and 19 of Lactation in High-Yielding Dairy Cows fed Triglycerides and Free Fatty Acids. Journal of Veterinary Medicine Series A, 47(1), 43–60. https://doi.org/10.1046/j.1439-0442.2000.00266.x Boes, M., Schmidt, T., Linkemann, K., Beaudette, B. C., Marshak-Rothstein, A., & Chen, J. (2000). Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proceedings of the National Academy of Sciences, 97, 1184–1189. https://doi.org/10.1073/pnas.97.3.1184 Brickner, A. E., Rastani, R. R., & Grummer, R. R. (2007). Technical Note: Effect of Sampling Protocol on Plasma Nonesterified Fatty Acid Concentration in Dairy Cows. Journal of Dairy Science, 90(5), 2219–2222. https://doi.org/10.3168/jds.2006-676 Burgess, K. (2010). Key requirements for milk quality and safety: A processor’s perspective. In M. W. Griffiths (Ed.), Improving the Safety and Quality of Milk. Woodhead Publishing. Chen, J., Gross, J. J., Van Dorland, H. A., Remmelink, G. J., Bruckmaier, R. M., & Kemp, B. (2015). Effects of dry period length and dietary energy source on metabolic status and hepatic gene expression of dairy cows in early lactation. Journal of Dairy Science, 98, 1033–1045. https://doi.org/10.3168/jds.2014-8612 Contreras, G. A., Strieder-Barboza, C., & Raphael, W. (2017). Adipose tissue lipolysis and remodeling during the transition period of dairy cows. Journal of Animal Science and Biotechnology, 8(1), 41. https://doi.org/10.1186/s40104-017-0174-4 Denholm, S. J., McNeilly, T. N., Banos, G., Coffey, M. P., Russell, G. C., Bagnall, A., Mitchell, M. C., & Wall, E. (2018). Immune-associated traits measured in milk of Holstein-Friesian cows as proxies for blood serum measurements. Journal of Dairy Science, 101(11), 10248–10258. https://doi.org/10.3168/jds.2018-14825 González, F. D., Muiño, R., Pereira, V., Campos, R., & Benedito, J. L. (2011). Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. Jvs, 12(3), 251–255. https://doi.org/10.4142/jvs.2011.12.3.251 Heringstad, B., Gianola, D., Chang, Y. M., Ødegård, J., & Klemetsdal, G. (2006). Genetic Associations Between Clinical Mastitis and Somatic Cell Score in Early First-Lactation Cows. Journal of Dairy Science, 89(6), 2236–2244. https://doi.org/10.3168/jds.S0022-0302(06)72295-0 Holodick, N. E., Rodríguez-Zhurbenko, N., & Hernández, A. M. (2017). Defining Natural Antibodies. Frontiers in Immunology, 8. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2017.00872 Horst, E. A., Kvidera, S. K., & Baumgard, L. H. (2021). Invited review: The influence of immune activation on transition cow health and performance—A critical evaluation of traditional dogmas. Journal of Dairy Science, 104(8), 8380–8410. https://doi.org/10.3168/jds.2021-20330 Karagiannis, I., Panousis, N., Kiossis, E., Tsakmakidis, I., Lafi, S., Arsenos, G., Boscos, C., & Brozos, Ch. (2014). Associations of pre-lambing body condition score and serum β-hydroxybutyric acid and non-esterified fatty acids concentrations with periparturient health of Chios dairy ewes. Small Ruminant Research, 120(1), 164–173. https://doi.org/10.1016/j.smallrumres.2014.05.001 Kirkeby, C., Schwarz, D., Denwood, M., Farre, M., Nielsen, S. S., Gussmann, M., Toft, N., & Halasa, T. (2021). Dynamics of somatic cell count (SCC) and differential SCC during and f ollowing intramammary infections. Journal of Dairy Science, 104(3), 3427–3438. Crossref. https://doi.org/10.3168/jds.2020-19378 Kirkeby, C., Toft, N., Schwarz, D., Farre, M., Nielsen, S. S., Zervens, L., Hechinger, S., & Halasa, T. (2020). Differential somatic cell count as an additional indicator for intrama mmary infections in dairy cows. Journal of Dairy Science, 103(2), 1759–1775. Crossref. https://doi.org/10.3168/jds.2019-16523 Larsen, S. B., Cowley, C. J., & Fuchs, E. (2020). Epithelial cells: Liaisons of immunity. Innate Immunity, 62, 45–53. https://doi.org/10.1016/j.coi.2019.11.004 Mäntysaari, P., Mäntysaari, E. A., Kokkonen, T., Mehtiö, T., Kajava, S., Grelet, C., & Lidauer, M. H. (2019). Body and milk traits as indicators of dairy cow energy status in early lactation. Journal of Dairy Science, 102(9), 7904–7916. https://doi.org/10.3168/jds.2018-15792 Mayasari, N., Rijks, W., de Vries Reilingh, G., Remmelink, G. J., Ducro, B., Kemp, B., Parmentier, H. K., & Van Knegsel, A. T. M. (2016). The effects of dry period length and dietary energy source on natural antibody titers and mammary health in dairy cows. Preventive Veterinary Medicine, 127, 1–9. https://doi.org/10.1016/j.prevetmed.2016.03.001 Naglik, J. R., König, A., Hube, B., & Gaffen, S. L. (2017). Candida albicans–epithelial interactions and induction of mucosal innate immunity. Host-Microbe Interactions: Fungi * Host-Microbe Interactions: Parasites, 40, 104–112. https://doi.org/10.1016/j.mib.2017.10.030 Nicola, I., Chupin, H., Roy, J.-P., Buczinski, S., Fauteux, V., Picard-Hagen, N., Cue, R., & Dubuc, J. (2022). Association between prepartum nonesterified fatty acid serum concentrations and postpartum diseases in dairy cows. Journal of Dairy Science, 105(11), 9098–9106. https://doi.org/10.3168/jds.2022-22014 Nirula, A., Glaser, S. M., Kalled, S. L., & Taylora, F. R. (2011). What is IgG4? A review of the biology of a unique immunoglobulin subtype. Current Opinion in Rheumatology, 23, 119–124. https://doi.org/10.1097/BOR.0b013e3283412fd4 Oetzel, G. R. (2004). Monitoring and testing dairy herds for metabolic disease. Veterinary Clinics: Food Animal Practice, 20(3), 651–674. https://doi.org/10.1016/j.cvfa.2004.06.006 Peng, C.-Y. J., & Chen, L.-T. (2014). Beyond Cohen’s d: Alternative Effect Size Measures for Between-Subject Designs. The Journal of Experimental Education, 82(1), 22–50. https://doi.org/10.1080/00220973.2012.745471 Persson, K., Carlsson, Å., Hambleton, C., & Guidry, A. J. (1992). Immunoglobulins, Lysozyme and Lactoferrin in the Teat and Udder of the Dry Cow during Endotoxin-Induced Inflammation. Journal of Veterinary Medicine, Series B, 39(1–10), 165–174. https://doi.org/10.1111/j.1439-0450.1992.tb01154.x Pillai, S. R., Kunze, E., Sordillo, L. M., & Jayarao, B. M. (2001). Application of Differential Inflammatory Cell Count as a Tool to Monitor Udder Health. Journal of Dairy Science, 84, 1413–1420. https://doi.org/10.3168/jds.S0022-0302(01)70173-7 Rainard, P., Foucras, G., Boichard, D., & Rupp, R. (2018). Invited review: Low milk somatic cell count and susceptibility to mastitis. Journal of Dairy Science, 101(8), 6703–6714. https://doi.org/10.3168/jds.2018-14593 Reyneveld, G. Ij., Savelkoul, H. F. J., & Parmentier, H. K. (2020). Current Understanding of Natural Antibodies and Exploring the Possibilities of Modulation Using Veterinary Models. A Review. Frontiers in Immunology, 11. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2020.02139 Sarrigeorgiou, I., Tsinti, G., Kalala, F., Germenis, A., Speletas, M., & Lymberi, P. (2024). Levels of Natural Antibodies Before and After Immunoglobulin Replacement Treatment Affect the Clinical Phenotype in Common Variable Immunodeficiency. Journal of Clinical Immunology, 45(1), 13. https://doi.org/10.1007/s10875-024-01805-7 Schukken, Y. H., Wilson, D. J., Welcome, F., Garrison-Tikofsky, L., & Gonzalez, R. N. (2003). Monitoring udder health and milk quality using somatic cell counts. Veterinary Research, 34, 579–596. Schwegler, E., Schneider, A., Montagner, P., Acosta, D. A. V., Pfeifer, L. F. M., Schmitt, E., Rabassa, V. R., Del Pino, F. A. B., de Lima Gonzalez, H., Timm, C. D., & Corrêa, M. N. (2013). Predictive value of prepartum serum metabolites for incidence of clinical and subclinical mastitis in grazing primiparous Holstein cows. Tropical Animal Health and Production, 45(7), 1549–1555. https://doi.org/10.1007/s11250-013-0398-z Singh, A. K., Bhakat, C., Mandal, D. K., Mandal, A., Rai, S., Chatterjee, A., & Ghosh, M. K. (2020). Effect of reducing energy intake during the dry period on milk production, udder health, and body condition score of Jersey crossbred cows in the tropical lower Gangetic region. Tropical Animal Health and Production, 52(4), 1759–1767. https://doi.org/10.1007/s11250-019-02191-8 Sordillo, L. M., Shafer-Weaver, K., & DeRosa, D. (1997). Immunobiology of the Mammary Gland. Journal of Dairy Science, 80, 1851–1865. https://doi.org/10.3168/jds.S0022-0302(97)76121-6 Souza, F. N., Blagitz, M. G., Batista, C. F., Takano, P. V., Gargano, R. G., Diniz, S. A., Silva, M. X., Ferronatto, J. A., Santos, K. R., Heinemann, M. B., De Vliegher, S., & Della Libera, A. M. M. P. (2020). Immune response in nonspecific mastitis: What can it tell us? Journal of Dairy Science, 103(6), 5376–5386. Crossref. https://doi.org/10.3168/jds.2019-17022 Thompson-Crispi, K. A., Miglior, F., & Mallard, B. A. (2013). Genetic parameters for natural antibodies and associations with specific antibody and mastitis in Canadian Holsteins. Journal of Dairy Science, 96, 3965–3972. https://doi.org/10.3168/jds.2012-5919 Tremetsberger, L., & Winckler, C. (2015). Effectiveness of animal health and welfare planning in dairy herds: A review. Animal Welfare, 24, 55–67. van Knegsel, A. T. M., de Vries Reilingh, G., Meulenberg, S., van den Brand, H., Dijkstra, J., Kemp, B., & Parmentier, H. K. (2007). Natural Antibodies Related to Energy Balance in Early Lactation Dairy Cows. Journal of Dairy Science, 90, 5490–5498. https://doi.org/10.3168/jds.2007-0289 van Knegsel, A. T. M., Hostens, M., de Vries Reilingh, G., Lammers, A., Kemp, B., Opsomer, G., & Parmentier, H. K. (2012). Natural antibodies related to metabolic and mammary health in dairy cows. Preventive Veterinary Medicine, 103, 287–297. https://doi.org/10.1016/j.prevetmed.2011.09.006 van Knegsel, A. T. M., Remmelink, G. J., Jorjong, S., Fievez, V., & Kemp, B. (2014). Effect of dry period length and dietary energy source on energy balance, milk yield, and milk composition of dairy cows. Journal of Dairy Science, 97, 1499–1512. https://doi.org/10.3168/jds.2013-7391 Wall, S. K., Wellnitz, O., Bruckmaier, R. M., & Schwarz, D. (2018). Differential somatic cell count in milk before, during, and after lipo polysaccharide- and lipoteichoic-acid-induced mastitis in dairy cows. Journal of Dairy Science, 101(6), 5362–5373. Crossref. https://doi.org/10.3168/jds.2017-14152 Wang, X., Wang, K., Jiang, L., Liu, W., Zhao, X., Zhang, F., Zhang, M., Su, G., Gao, Y., & Li, J. (2023). Use of milk mid-infrared spectra to predict serum non-esterified fatty acid concentrations in Chinese Holstein cows. Animal - Open Space, 2, 100055. https://doi.org/10.1016/j.anopes.2023.100055 Winther, A. R., da Silva Duarte, V., & Porcellato, D. (2023). Metataxonomic analysis and host proteome response in dairy cows with h igh and low somatic cell count: A quarter level investigation. Veterinary Research, 54(1). Crossref. https://doi.org/10.1186/s13567-023-01162-0 Zachut, M., & Contreras, G. A. (2022). Symposium review: Mechanistic insights into adipose tissue inflammation and oxidative stress in periparturient dairy cows. Journal of Dairy Science, 105(4), 3670–3686. https://doi.org/10.3168/jds.2021-21225



DOI: https://doi.org/10.22146/jsv.105442

Article Metrics

Abstract views : 536 | views : 9

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Jurnal Sain Veteriner

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Sain Veteriner Indexed by

    CrossrefROADCOREProduct DetailsDESKRIPSI GAMBAR


Copyright of JSV (Jurnal Sain Veteriner) ISSN 0126-0421 (print), ISSN 2407-3733 (online).

Fakultas Kedokteran Hewan, Universitas Gadjah Mada

Jl. Fauna No.2, Karangmalang, Yogyakarta

Phone: 0274-560862

Fax: 0274-560861

Email: jsv_fkh@ugm.ac.id

HP. 0895363078367

Jurnal Sain Veteriner is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

free
web stats View My Stats