Sintesis katalis asam heterogen berbasis polivinil alkohol (PVA) dan pemanfaatannya dalam produksi metil ester asam lemak
Ryan Hartono(1), Henky Muljana(2*), Asaf Kleopas Sugih(3), Usman Oemar(4), Jessica Atin(5), Gadmon Ahimsa(6)
(1) Jurusan Teknik Kimia Universitas Katolik Parahyangan
(2) Jurusan Teknik Kimia Universitas Katolik Parahyangan
(3) Jurusan Teknik Kimia Universitas Katolik Parahyangan
(4) PT Ecogreen Oleochemicals
(5) PT Ecogreen Oleochemicals
(6) PT Ecogreen Oleochemicals
(*) Corresponding Author
Abstract
Sulfonated polyvinyl alcohol is a potential heterogeneous acid catalyst for fatty acid methyl esters (FAME) production. The catalyst (PVA/SSA) was synthesized via an esterification reaction between polyvinyl alcohol (PVA) and sulfosuccinic acid (SSA). This research aimed to study the effect of several process variables, such as the molecular weight (MW) of PVA, washing step with methanol, annealing conditions (time, temperature, and annealing pressure), and drying temperature on the performance of the PVA/SSA catalyst in methanol and free fatty acid (FFA) esterification. The sulfonated PVA catalyst was successfully synthesized, as indicated by the presence of the sulfonate group (SO3) at an absorption band of 1267 cm-1 and the carbonyl group (C=O) at an absorption band of 1628 cm-1 in the FT-IR spectra. The resulting PVA/SSA catalyst shows a good performance, where maximum conversion of the fatty acid esterification reaction can reach 81.9%. In addition, the catalyst can be used for at least four repetitions with a decrease in FAME conversion from the first to the second stage of 28.2% and has relatively stable performance in the second and subsequent reactions (conversion range 49, 1% - 58.8%). The resulting catalyst also has good thermal stability with a first-stage degradation range of 200oC to 290oC, allowing it to be applied in a temperature range suitable to the FAME manufacturing industries requirement.
Full Text:
PDFReferences
Almeida EL, Andrade CMG, Andreo Dos Santos O. 2018. Production of Biodiesel Via Catalytic Processes: A Brief Review. International Journal of Chemical Reactor Engineering. 16(5). doi:10.1515/ijcre-2017-0130.
Aziz SB, Abdullah OG, Hussein SA, Ahmed HM. 2017. Effect of PVA blending on structural and ion transport properties of CS:AgNt-based polymer electrolyte membrane. Polymers. 9(11):622. doi:10.3390/polym9110622.
Balani K, Verma V, Agarwal A, Narayan R. 2015. Biosurfaces: A Materials Science and Engineering Perspective. John Wiley & Sons, Inc. doi:10.1002/9781118950623.
Cabral NM, Lorenti JP, Plass W, Gallo JMR. 2020. Solid Acid Resin Amberlyst 45 as a Catalyst for the Transesterification of Vegetable Oil. Frontiers in Chemistry. 8. doi: 10.3389/fchem.2020.00305.
Caetano CS, Guerreiro L, Fonseca IM, Ramos AM, Vital J, Castanheiro JE. 2009. Esterification of fatty acids to biodiesel over polymers with sulfonic acid groups. Applied Catalysis A: General. 359(1-2):41–46. doi:10.1016/j.apcata.200 9.02.028.
Cao M, Peng L, Xie Q, Xing K, Lu M, Ji J. 2021. Sulfonated Sargassum horneri carbon as solid acid catalyst to produce biodiesel via esterification. Bioresource Technology. 324:124614. doi:10.1016/j.biortech.2020.124614.
Changmai B, Vanlalveni C, Ingle AP, Bhagat R, Rokhum L. 2020. Widely used catalysts in biodiesel production: A review. RSC Advances. 10(68):41625–41679. doi:10.1039/d0ra07 931f.
Christopher LP, Hemanathan Kumar, Zambare VP. 2014. Enzymatic biodiesel: Challenges and opportunities. Applied Energy. 119:497–520. doi:10.1016/j.apenergy.2014.01.017.
Cong H, Xing J, Ding X, Zhang S, Shen Y, Yu B. 2020. Preparation of porous sulfonated poly(styrene-divinylbenzene) microspheres and its application in hydrophilic and chiral separation. Talanta. 210:120586. doi:10.1016/j.talanta. 2019.120586.
Devaraj Naik B, Udayakumar M. 2019. Optimization studies on esterification of waste cooking oil using sulfated montmorillonite clay acidic catalyst. Materials Today: Proceedings. 46:9855–9861. doi:10.1016/j.matpr.2020.11.419.
Dong F, Xu S, Wu X, Jin D, Wang P, Wu D, Leng Q. 2021. Crosslinked poly(vinyl alcohol)/sulfosuccinic acid (PVA/SSA) as cation exchange membranes for reverse electrodialysis. Separation and Purification Technology. 267:118629. doi: 10.1016/j.seppur.2021.118629.
Fu J, Chen L, Lv P, Yang L, Yuan Z. 2015. Free fatty acids esterificationforbiodieselproductionusingself-synthesized macroporous cation exchange resin as solid acid catalyst. Fuel. 154:1–8. doi:10.1016/j.fuel.2015.03.048.
Gomaa MM, Hugenschmidt C, Dickmann M, Abdel-Hady EE, Mohamed HF, Abdel-Hamed MO. 2018. Crosslinked PVA/SSA proton exchange membranes: Correlation between physiochemical properties and free volume determined by positron annihilation spectroscopy. Physical Chemistry Chemical Physics. 20(44):28287–28299. doi: 10.1039/c8cp05301d.
Irawan MG, Muljana H, Sugih AK, Oemar U, Atin J. 2022. Sintesis polivinil alkohol tersulfonasi sebagai katalis dalam produksi metil ester: review. Jurnal Rekayasa Proses. 16(1):66. doi:10.22146/jrekpros.70698.
Kansedo J, Sim YX, Lee KT. 2019. Feasibility of Continuous Fatty Acid Methyl Esters (FAME) Production from Hydrolyzed Sea Mango (Cerbera odollam) Oil at Room Temperature Using Cationic Ion Exchange Resin. IOP Conference Series: Materials Science and Engineering. 495(1):12050. doi:10.1088/1757-899X/495/1/012050.
Kenar JA, Moser BR, List GR. 2017. Naturally Occurring Fatty Acids. In: Fatty Acids. Elsevier. p. 23–82. doi:10.1016/b978-0-12-809521-8.00002-7.
Khan Z, Javed F, Shamair Z, Hafeez A, Fazal T, Aslam A, Zimmerman WB, Rehman F. 2021. Current developments in esterification reaction: A review on process and parameters. Journal of Industrial and Engineering Chemistry. 103:80–101. doi:10.1016/j.jiec.2021.07.018.
Mandari V, Devarai SK. 2022. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review. Bioenergy Research. 15(2):935–961. doi:10.1 007/s12155-021-10333-w.
Mekala M, Goli VR. 2015. Kinetics of esterification of methanol and acetic acid with mineral homogeneous acid catalyst. Chinese Journal of Chemical Engineering. 23(1):100– 105. doi:10.1016/j.cjche.2013.08.002.
Mendaros CM, Go AW, Nietes WJT, Gollem BEJO, Cabatingan LK. 2020. Direct sulfonation of cacao shell to synthesize a solid acid catalyst for the esterification of oleic acid with methanol. Renewable Energy. 152:320–330. doi:10.1016/j. renene.2020.01.066.
Mishra VK, Goswami R. 2018. A review of production, properties and advantages of biodiesel. Biofuels. 9(2):273–289. doi:10.1080/17597269.2017.1336350.
Mostafa Marzouk N, Abo El Naga AO, Younis SA, Shaban SA, El Torgoman AM, El Kady FY. 2021. Process optimization of biodiesel production via esterification of oleic acid using sulfonated hierarchical mesoporous ZSM-5 as an efficient heterogeneous catalyst. Journal of Environmental Chemical Engineering. 9(2):105035. doi:10.1016/j.jece.2 021.105035.
Rabiu A, Elias S, Oyekola O. 2018. Oleochemicals from Palm Oil for the Petroleum Industry. In: Palm Oil. InTech. doi: 10.5772/intechopen.76771.
Rhim JW, Park HB, Lee CS, Jun JH, Kim DS, Lee YM. 2004. Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: Proton and methanol transport through membranes. Journal of Membrane Science. 238(12):143–151. doi:10.1016/j.memsci.2004.03.030.
Rudra R, Kumar V, Kundu PP. 2015. Acid catalysed crosslinking of poly vinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Advances. 5(101):83436–83447. doi:10.1039/c5ra16 068e.
Rynkowska E, Fatyeyeva K, Marais S, Kujawa J, Kujawski W. 2019. Chemically and thermally crosslinked PVA-based membranes: Effect on swelling and transport behavior. Polymers. 11(11):1799. doi:10.3390/polym11111799.
DOI: https://doi.org/10.22146/jrekpros.84514
Article Metrics
Abstract views : 1182 | views : 1091Refbacks
- There are currently no refbacks.
Copyright (c) 2023 The authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.