Pengaruh parameter operasi terhadap persentase rekoveri litium dari sea water reverse osmosis (SWRO)
Ferian Anggara(1*), Vincent Sutresno Hadi Sujoto(2), Widi Astuti(3), Slamet Sumardi(4), Ilham Satria Raditya Putra(5), Agik Dwika Putra(6), Himawan Tri Bayu Murti Petrus(7)
(1) Program Studi Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55283, Indonesia
(2) Program Studi Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55283, Indonesia
(3) Badan Riset dan Inovasi Nasional (BRIN), Jl. Ir. Sutami, Serdang, Kec. Tj. Bintang, Kabupaten Lampung Selatan, Lampung, 35361, Indonesia
(4) Badan Riset dan Inovasi Nasional (BRIN), Jl. Ir. Sutami, Serdang, Kec. Tj. Bintang, Kabupaten Lampung Selatan, Lampung, 35361, Indonesia
(5) PT.Cirebon Electric Power, Jl. Raya Cirebon – Tegal Km. 8.5, Kanci Kulon, Astanajapura, Cirebon, 45181, Indonesia
(6) 
(7) Program Studi Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55283, Indonesia
(*) Corresponding Author
Abstract
Konsentrasi litium dalam sea water reverse osmosis (SWRO) terhitung masih kecil dibandingkan dengan sumber konvensional. Tren penggunaan air laut di dunia diperkirakan naik untuk tahun-tahun mendatang. Tujuan dari penelitian ini adalah untuk mengekstrak litium dari limbah cair SWRO. Bahan yang digunakan adalah limbah cair SWRO yang berasal dari PT. Cirebon Electric Power. Tahap awal yang perlu dilakukan adalah proses evaporasi. Proses evaporasi dilakukan pada temperatur 90°C. Proses evaporasi bertujuan untuk memekatkan atau mengkonsentrasikan mineral tertentu. Pada tahapan ini persentase penguapan divariasikan (70, 80, dan 90%). Proses presipitasi dilakukan dengan menggunakan bantuan natrium karbonat (Na2CO3). Tahap awal adalah pembuatan larutan Na2CO3 3 Molar. 250 mL larutan hasil evaporasi disiapkan dan dipanaskan pada berbagai variasi temperatur (70, 80, dan 90 °C). Analisa tersebut juga menunjukkan kecenderungan semakin meningkatnya persentase rekoveri yang sejalan dengan meningkatnya persentase penguapan. Meskipun dampaknya kecil, temperatur presipitasi juga memberikan dampak dalam proses persentase rekoveri litium. Kondisi terbaik di dalam penelitian ini adalah pada persentase penguapan 90% dengan temperatur presipitasi 90 °C dengan persentase rekoveri mencapai lebih dari 70%.
Keywords
Full Text:
PDFReferences
Breig SJM, Luti KJK. 2021. Response surface methodology:A review on its applications and challenges in microbial cultures. Materials Today: Proceedings. 42:2277–2284.doi:10.1016/j.matpr.2020.12.316.
CHOI DH, WANG JP. 2020. A study on the synthesis of lithiumcarbonate (li2co3) from waste acidic sludge.Archives ofMetallurgy and Materials. 65(4):1351–1355. doi:10.24425/amm.2020.133698.
Coterillo R, Gallart LE, Fernández-Escalante E, Junquera J,García-Fernández P, Ortiz I, Ibañez R, San-Román MF.2022.Selective extraction of lithium from seawater desalination concentrates:Study of thermodynamic andequilibrium properties using Density Functional Theory(DFT). Desalination. 532:115704. doi:10.1016/j.desal.2022.115704.
Flexer V, Fernando C, Inés C. 2018.Science of the Total Environment Lithium recovery from brines :A vital raw material for green energies with a potential environmentalimpact in its mining and processing. Science of the TotalEnvironment. 639:1188–1204. https://doi.org/10.1016/j.scitotenv.2018.05.223.
GlasstoneS,SesonskeA.1994.NuclearReactorEngineering.Engineering.C:395.http://link.springer.com/10.1007/978-1-4615-2083-2.
GrosjeanC,HerreraMirandaP,PerrinM,PoggiP.2012.Assessmentofworldlithiumresourcesandconsequences Renewable and Sustainable Energy Reviews.16(3):1735–1744.http://dx.doi.org/10.1016/j.rser.2011.11.023.
HTangkasIWCW,AstutiW,Sutijan,SumardiS,PetrusHTBM.2021.Lithium titanium oxide synthesis by solid-state reactionforlithiumadsorptionfromartificialbrinesource.IOP Conference Series: Earth and Environmental Science.882(1):012005.doi:10.1088/17551315/882/1/012005.
Han B, Anwar UI Haq R, Louhi-Kultanen M. 2020.Lithiumcarbonate precipitation by homogeneous and heterogeneous reactive crystallization. Hydrometallurgy. 195. doi:10.1016/j.hydromet.2020.105386.
HartonoM,AstrayudhaMA,PetrusHTBM,BudhijantoW,Sulistyo H. 2017.LITHIUM RECOVERY OF SPENT LITHIUMIONBATTERYUSINGBIOLEACHINGFROMLOCALSOURCES MICROORGANISM.Rasayan Journal of Chemistry.doi:10.7324/RJC.2017.1031767.
Huang Y, Wang R. 2019.Highly Effective and Low-Cost IonImprinted Polymers Loaded on Pretreated Vermiculitefor Lithium Recovery. Industrial & Engineering Chemistry Research. 58(27):12216–12225.doi:10.1021/acs.iecr.9b01244.
Khalil A, Mohammed S, Hashaikeh R, Hilal N. 2022. Lithiumrecoveryfrombrine:Recentdevelopmentsandchallenges. Desalination. 528:115611. doi:10.1016/j.desal.2022.115611.
Lide DR. 2007. CRC Handbook of Chemistry and Physics, 87thed Editor-in-Chief:David R. Lide (National Institute ofStandardsandTechnology).CRCPress/TaylorandFrancis Group: Boca Raton, FL. 2006. 2608 pp. 139.95. ISBN 08493-0487-3. Journal of the American Chemical Society.129(3):724–724.doi:10.1021/ja069813z.
Murodjon S, Yu X, Li M, Duo J, Deng T. 2020.Lithium RecoveryfromBrinesIncludingSeawater,SaltLakeBrine,Underground Water and Geothermal Water.In:Thermodynamics and Energy Engineering. IntechOpen. doi:10.5772/intechopen.90371.
OpitzA,BadamiP,ShenL,VignaroobanK,KannanAM.2017.Can Li-Ion batteries be the panacea for automotive applications?RenewableandSustainableEnergyReviews.68(October 2016):685–692. http://dx.doi.org/10.1016/j.rser.2016.10.019.
Qiu Y, Ruan H, Tang C, Yao L, Shen J, Sotto A. 2019. Study onrecoveringhigh-concentrationlithiumsaltfromlithiumcontaining wastewater using a hybrid reverse osmosis(RO)-electrodialysis (ED) process. ACS Sustainable Chemistry and Engineering. 7(15):13481–13490.doi:10.1021/acssuschemeng.9b03108.
Seidell A. 1940.Solubilities of inorganic and metal organiccompounds : a compilation of quantitative solubility datafromtheperiodicalliterature.
SujotoVSH,Sutijan,AstutiW,SumardiS,LouisISY,PetrusHTBM. 2022.Effect of Operating Conditions on LithiumRecoveryfromSyntheticGeothermalBrineUsingElectrodialysis Method.Journal of Sustainable Metallurgy.8(1):274–287.doi:10.1007/s40831-021-00488-3.
SunY,WangQ,WangY,YunR,XiangX.2021.Recentadvancesinmagnesium/lithiumseparationandlithiumextraction technologies from salt lake brine.Separation andPurificationTechnology.256:117807.doi:10.1016/j.seppur.2020.117807.
SutijanS,WahyudiS,IsmailMF,MustikaPCB,AstutiW,Prasetya A, Petrus HTBM. 2022. Forward Osmosis to ConcentrateLithiumfromBrine:TheEffectofOperatingConditions (pH and Temperature).International Journal of Technology.13(1):136.doi:10.14716/ijtech.v13i1.4371.
WangH,DuB,WangM.2018.StudyoftheSolubility,SupersolubilityandMetastableZoneWidthofLi2CO3intheLiClNaCl-KCl-Na2SO4Systemfrom293.15to353.15K.Journal of Chemical and Engineering Data. 63(5):1429–1434.doi:10.1021/acs.jced.7b01012.
Žeželj B, Dimovski P. 2019.Leaching requirements for saltaffectedsoilsofWestNubianvalleyofNileRiver(NorthSudan). Zemljiste i biljka. 68(1):24–35. doi:10.5937/zembilj1901024q.
ZhangY,WangL,SunW,HuY,TangH.2020. Membranetechnologies for Li+/Mg2+ separation from salt-lake brinesand seawater: A comprehensive review. Journal of Industrial and Engineering Chemistry. 81:7–23. doi:10.1016/j.jiec.2019.09.002.
DOI: https://doi.org/10.22146/jrekpros.79556
Article Metrics
Abstract views : 1257 | views : 896Refbacks
- There are currently no refbacks.
Copyright (c) 2023 The authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.