Tertiary butylhydroquinone influence over oxidation stability of biodiesel from waste cooking oil

https://doi.org/10.22146/jrekpros.67177

Dwi Ardiana Setyawardhani(1*), Thufeil 'Ammar(2), Yusuf Ammar(3)

(1) Chemical Engineering Department, Faculty of Engineering, Sebelas Maret University, Jl Ir. Sutami No.36, 57126, Surakarta, Indonesia
(2) Chemical Engineering Department, Faculty of Engineering, Sebelas Maret University, Jl Ir. Sutami No.36, 57126, Surakarta, Indonesia
(3) Chemical Engineering Department, Faculty of Engineering, Sebelas Maret University, Jl Ir. Sutami No.36, 57126, Surakarta, Indonesia
(*) Corresponding Author

Abstract


ABSTRACT

An oxidation stability is very important for a long-term storage of biodiesel. Some physical (density and viscosity) and chemical properties (acid value, iodine value, and peroxide value) were analyzed to predict the oxidation stability for biodiesel produced from Waste Cooking Oil (WCO). WCO is one of the potential feedstocks in Indonesia, which is a large cooking oil consumer. Biodiesel from WCO was produced by transesterification process in 60 oC temperature for one hour reaction time. Methanol was added in 4:1 (v/v) ratio of WCO with 2% potassium hydroxide as a catalyst. This study observed the influence of tertiary butylhydroquinone (TBHQ), a synthetic antioxidant, on  the oxidation stability of biodiesel. TBHQ was used as an antioxidant agent to prevent biodiesel oxidation for such long-term storage. It was blended with biodiesel at various concentrations (0-1200 ppm). Samples were taken every week to measure the density, viscosity, acid value, iodine value (IV) and peroxide value (PV) during the storage process of the biodiesel blends which was conducted for 4 weeks. The experimental results revealed that an improvement in oxidation stability was achieved in all TBHQ concentrations. All parameters meet Indonesia’s National Standards (SNI) for biodiesel added with TBHQ up to 1200 ppm. Biodiesel which was treated with 1200 ppm of TBHQ provided the best result, due to its density, viscosity, IV, and PV.  However, TBHQ addition was did not affect the free fatty acid and acid number for 4 weeks of storage.

Keywords: antioxidant; biodiesel; oxidation stability; waste cooking oil


ABSTRAK

Ketahanan oksidasi merupakan karakteristik yang sangat penting dalam penyimpanan biodiesel. Penelitian ini menganalisis sifat-sifat fisis (densitas dan viskositas) serta sifat-sifat kimia (angka asam, angka iod dan angka peroksida) biodiesel minyak jelantah untuk memperkirakan ketahanannya terhadap pengaruh oksidasi. Minyak jelantah merupakan salah satu bahan baku biodiesel yang sangat potensial di Indonesia, karena kapasitas penggunaannya yang cukup besar. Biodiesel minyak jelantah dihasilkan dengan transesterifikasi pada suhu 60 oC selama 1 jam. Metanol yang ditambahkan dalam reaksi ini menggunakan perbandingan volume 4:1, dengan katalis KOH sebanyak 2% berat minyak. Penelitian ini mempelajari pengaruh tertiary butylhydroquinone (TBHQ) terhadap ketahanan oksidasi biodiesel minyak jelantah. TBHQ digunakan sebagai antioksidan dalam penyimpanan biodiesel jangka panjang. TBHQ dicampurkan ke dalam biodiesel dengan variasi konsentrasi 0-1200 ppm. Ketahanan oksidasi dipelajari selama masa simpan 4 minggu. Sampel dianalisis densitas, viskositas, angka asam, angka iod dan angka peroksida setiap minggu. Hasil analisis menunjukkan bahwa ketahanan oksidasi biodiesel minyak jelantah telah memenuhi SNI pada semua konsentrasi TBHQ. Hasil terbaik diberikan oleh biodiesel jelantah yang ditambahkan 1200 ppm TBHQ, menilik dari nilai densitas, viskositas, angka peroksida dan bilangan iod. Penambahan TBHQ tidak berpengaruh secara signifikan terhadap nilai asam lemak bebas dan angka asam selama penyimpanan 4 minggu.

Kata kunci: biodiesel, ketahanan oksidasi, antioksidan, minyak jelantah



Keywords


antioxidant; biodiesel; oxidation stability; waste cooking oil

Full Text:

PDF


References

Abramovič H, Abram V. 2005. Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food technology and biotechnology. 43(1):63–70.

Almeida ES, Portela FM, Sousa RMF, Daniel D, Terrones MGH, Richter EM, Muñoz RAA. 2011. Behaviour of the antioxidant tert -butylhydroquinone on the storage stability and corrosive character of biodiesel. Fuel. 90(11):3480–3484. doi:10.1016/j.fuel.2011.06.056.

Banu M, Prasad N, Siddaramaiah. 2016. Effect of antioxidant on thermal stability of vegetable oils by using ultrasonic studies. International Food Research Journal. 23(2):528– 536.

Chai M, Tu Q, Lu M, Yang YJ. 2014. Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel processing technology. 125:106–113.

Domingos AK, Saad EB, Vechiatto WW, Wilhelm HM, Ramos LP. 2007. The influence of BHA, BHT and TBHQ on the oxidation stability of soybean oil ethyl esters (biodiesel). Journal of the Brazilian Chemical Society. 18(2):416–423. doi:10.1590/S0103-50532007000200026.

Dunn RO. 2005. Effect of antioxidants on the oxidative stability of methyl soyate ( biodiesel ) B. 86:1071–1085. doi: 10.1016/j.fuproc.2004.11.003.

Embuscado ME. 2015. Spices and herbs: Natural sources of antioxidants - A mini review. Journal of Functional Foods. 18(December):811–819. doi:10.1016/j.jff.2015.03.005.

Fahd MEA, Lee Ps, Chou SK, Wenming Y, Yap C. 2014. Experimental study and empirical correlation development of fuel properties of waste cooking palm biodiesel and its diesel blends at elevated temperatures. Renewable Energy. 68:282–288. doi:10.1016/j.renene.2014.02.007.

Fattah IMR, Masjuki HH, Kalam MA, Mofijur M, Abedin MJ. 2014. Effect of antioxidant on the performance and emission characteristics of a diesel engine fueled with palm biodiesel blends. Energy Conversion and Management. 79:265–272. doi:10.1016/j.enconman.2013.12.024.

Karavalakis G, Hilari D, Givalou L, Karonis D, Stournas S. 2011. Storage stability and ageing effect of biodiesel blends treated with different antioxidants. Energy. 36(1):369– 374. doi:10.1016/j.energy.2010.10.029.

Khalid A, Tamaldin N, Jaat M, Ali MFM, Manshoor B, Zaman I. 2013. Impacts of biodiesel storage duration on fuel properties and emissions. Procedia Engineering. 68:225–230.

Mittelbach M, Schober S. 2003. The Influence of Antioxidants on the Oxidation Stability of Biodiesel. J Amer Oil Chem Soc. 80(8):817–823.

NguyenThi TX, Bazile JP, Bessières D. 2018. Density measurements of waste cooking oil biodiesel and diesel blends over extended pressure and temperature ranges. Energies. 11(5):1212.

Oliveros MGM, Baiting AB, Lumain MG, Cabaraban MTI. 2007. Ethanol-based biodiesel from waste vegetable oil. ASEAN Journal of Chemical Engineering. 7(1 2):83–87.

Orives JR, Galvan D, Pereira JL, Coppo RL, Borsato D. 2014. Experimental Design Applied for Cost and Efficiency of Antioxidants in Biodiesel. Journal of American Oil Chemist Society. doi:10.1007/s11746-014-2517-z.

Riadi L, Sapei L, Kristiani Y, Sugianto O. 2014. Pemanfaatan Abu Sekam Padi pada Ozonisasi Minyak Goreng Bekas untuk Menghasilkan Biodiesel. Jurnal Rekayasa Proses. 8(1):25–32. doi:10.22146/jrekpros.5020.

Roliadi H, Sudradjat R, Anggarini A. 2012. The Possible Uses of Antioxidant to Increase Oxidation Resistance of Biodiesel Synthesized from Jatropha Curcas L. Seed Oil. Penelitian Hasil Hutan. 30(1):68–85.

Ryu K. 2009. Effect of antioxidants on the oxidative stability and combustion characteristics of biodiesel fuels in an indirect-injection ( IDI ) diesel engine †. Journal of Mechanical Science and Technology. 23:3105–3113. doi: 10.1007/s12206-009-0902-6.

Tang H,Wang A, Salley SO, Ng KYS. 2008. The Effect of Natural and Synthetic Antioxidants on the Oxidative Stability of Biodiesel. J Amer Oil Chem Soc. 85:373–382. doi:10.1007/ s11746-008-1208-z.

Yaakob Z, Narayanan BN, Padikkaparambil S, K SU. 2014. A Review on the Oxidation Stability of Biodiesel. Renewable and Sustainable Energy Reviews. 35:136–153.

Yang Z, Hollebone BP,Wang Z, Yang C, LandriaultM. 2013. Factors Affecting Oxidation Stability of Commercially Available Biodiesel Products. Fuel Processing Technology. 106:366–375. doi:10.1016/j.fuproc.2012.09.001.

Yuliarita E, Fathurrahman NA, Aisyah L, Hermawan N, Anggarani R, Maymuchar. 2019. Comparison of Synthetic and Plant Extract Antioxidant Additives on Biodiesel Stability. IOP Conference Series: Materials Science and Engineering. 494(1):1–7. doi:10.1088/1757-899X/494/1/0120 30.

Yusri S, Nasikin M, Sutanto H. 2020. Effect of Surfactant Addition on the Dispersion and Antioxidant Performance of Pyrogallol in Biodiesel. Makara Journal of Science. 24(4). doi:10.7454/mss.v24i4.1018.

Zuleta EC, Baena L, Rios LA. 2012. The Oxidative Stability of Biodiesel and its Impact on the Deterioration of Metallic and Polymeric Materials: a Review. J.Braz. Chem.Soc.. 23(12):2159–2175.



DOI: https://doi.org/10.22146/jrekpros.67177

Article Metrics

Abstract views : 3738 | views : 1259

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 The authors

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Rekayasa Proses  (print ISSN 1978-287X; online ISSN 2549-1490) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada. View website statistics.