Studi Kondisi Operasi dalam Pemisahan Asam Laktat dari Produk Konversi Katalitik Tandan Kosong Sawit Melalui Esterifikasi-Hidrolisis
Johnner Parningotan Sitompul(1), Ana Kemala Putri Jauhari(2*), Gun Gun Gumilar(3), Yosandi Calimanto(4), Carolus Borromeus Rasrendra(5)
(1) Program Studi Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia, 40123
(2) Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora No.1, Bulaksumur, Yogyakarta, Indonesia, 55281
(3) Program Studi Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia, 40123
(4) Program Studi Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia, 40123
(5) Program Studi Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia, 40123
(*) Corresponding Author
Abstract
Lactic acid is a platform chemical that is usually used to form various chemical products. Nowadays, the need of lactic acid is increasingly high especially for bio-based chemical as a substitute for petroleum-based one. Catalytic chemical conversion is seemingly potential to substitute the bioconversion pathway. This research aims to determine the best operating condition for separating lactic acid from its mixture (the catalytic conversion product of oil palm empty fruit bunch) by esterification-hydrolysis in order to produce the highest yield and purity. The esterification of the mixture was carried out by using n-butanol as a solvent and wet Amberlyst-15 as a catalyst. The esterification process was conducted by reacting n-butanol and lactic acid for 6 hours in a batch reactor. Hydrolysis was then followed by reacting organic phase as an esterification product and water in batch reactor system for 4 hours. The result showed that the higher reactant volume ratio, temperature, and catalyst concentration were used, the higher yield of both esterification and hydrolysis products would be. The highest esterification yield of 98.64%-w/w was achieved when the temperature was at 90oC, with a reactant volume ratio of 4, and the catalyst concentration of 2.5%-w/w. Moreover, the experiment results showed that the highest hydrolysis yield of 98.64%-w/w was achieved by the temperature of 90 oC, the reactant volume ratio of 20, and the catalyst concentration of 2.5%-w/w. It was revealed that the most significant variable for esterification was reactant volume ratio while both reactant volume ratio and temperature become the prominent variables for hydrolysis counterpart. Additionally, another modified method of separation was conducted by applying reactive distillation. This modified process increased the hydrolysis yield up to 82.34%-w/w by using pure butyl lactate as feed while the usage of the catalytic butyl lactate as feed could produce lactic acid with the yield of 74.01%-w/w.
A B S T R A K
Asam laktat adalah bahan kimia antara yang bermanfaat untuk pembentukan berbagai macam produk kimia. Permintaan asam laktat dewasa ini sangat tinggi terutama sebagai bahan kimia berbasis alam yang digunakan sebagai substitusi untuk penggunaan bahan kimia tak terbarukan. Terdapat banyak alternatif proses yang sudah dilakukan oleh peneliti untuk menemukan metode alternatif yang efektif sebagai pengganti proses fermentasi dan konversi katalitik merupakan proses yang berpotensi untuk diaplikasikan. Penelitian ini bertujuan untuk menentukan kondisi operasi yang menghasilkan perolehan asam laktat tinggi pada reaksi esterifikasi-hidrolisis asam laktat dari produk reaksi katalitik tandan kosong sawit menggunakan n-butanol p.a., dan katalis Amberlyst-15 basah. Esterifikasi dilakukan dengan mereaksikan n-butanol dan umpan hasil konversi katalitik tandan kosong sawit selama 6 jam. Hidrolisis dilakukan dengan mereaksikan air dan fase organik esterifikasi selama 4 jam. Hasil menunjukkan semakin tinggi temperatur reaksi, rasio volume reaktan, dan konsentrasi katalis, semakin tinggi perolehan asam laktat esterifikasi dan hidrolisis yang dihasilkan. Perolehan butil laktat tertinggi pada reaksi esterifikasi diperoleh sebesar 98,64%-b/b pada kondisi 90 oC, rasio volume 4 dan konsentrasi katalis 2,5%-b/b. Perolehan asam laktat tertinggi pada reaksi hidrolisis diperoleh sebesar 67,97%-b/b pada kondisi 90 oC, rasio volume 20 dan konsentrasi katalis 2,5%-b/b. Variabel signifikan pada esterifikasi adalah rasio volume reaktan, sedangkan pada hidrolisis adalah rasio volume reaktan dan temperatur. Penggunaan distilasi reaktif pada hidrolisis mampu meningkatkan perolehan asam laktat hingga 82,34%-b/b untuk butil laktat murni sebagai umpan dan 74,01%-b/b untuk butil laktat katalitik sebagai umpan.
Keywords
Full Text:
PDFReferences
Castillo Martinez, F.A., Balciunas, E.M., Salgado, J.M., Domínguez González, J.M., Converti, A. and Oliveira, R.P. de S., 2013, Lactic acid properties, applications and production: A review, Trends Food Sci. Technol., 30 (1), 70–83.
Delgado, P., Sanz, M.T. and Beltrán, S., 2007, Kinetic study for esterification of lactic acid with ethanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst, Chem. Eng. J., 126 (2–3), 111–118.
Soeprijanto, Indriawati, K., and Abdulgani N., 2014, Enzymatic hydrolysis of sorghum bagasse to readily fermentable sugar for bioethanol., Jurnal Rekayasa Proses, 8(1), 20–24.
Lei, X., Wang, F.F., Liu, C.L., Yang, R.Z. and Dong, W.S., 2014, One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst, Appl. Catal. A Gen., 482, 78–83.
Li, K.T. and Wang, C.K., 2012, Esterification of lactic acid over TiO2-Al2O3 catalysts, Appl. Catal. A Gen., 433–434, 275–279.
Li, S., Deng, W., Li, Y., Zhang, Q. and Wang, Y., 2019, Catalytic conversion of cellulose-based biomass and glycerol to lactic acid, J. Energy Chem., 32, 138–151.
Li, W., Xu, Z., Zhang, T., Li, G., Jameel, H., Chang, H. min and Ma, L., 2016, Catalytic conversion of biomass-derived carbohydrates into 5-hydroxymethylfurfural using a strong solid acid catalyst in aqueous γ-valerolactone, BioResources, 11 (3), 5839–5853.
Lux, S. and Siebenhofer, M., 2013, Synthesis of lactic acid from dihydroxyacetone: Use of alkaline-earth metal hydroxides, Catal. Sci. Technol., 3 (5), 1380–1385.
Marianou, A.A., Michailof, C.M., Pineda, A., Iliopoulou, E.F., Triantafyllidis, K.S. and Lappas, A.A., 2018, Effect of Lewis and BrØnsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media, Appl. Catal. A Gen., 555, 75–87.
Oliveira, F.S., Araújo, J.M.M., Ferreira, R., Rebelo, L.P.N. and Marrucho, I.M., 2012, Extraction of l-lactic, l-malic, and succinic acids using phosphonium-based ionic liquids, Sep. Purif. Technol., 85, 137–146.
Pal, P., Sikder, J., Roy, S. and Giorno, L., 2009, Process intensification in lactic acid production: A review of membrane based processes, Chem. Eng. Process. Process Intensif., 48 (11–12), 1549–1559.
Puspita Aini, A., Lee, H.W., Parningotan Sitompul, J. and Rasrendra, C.B., 2018, Production of lactic acid from empty fruit bunch of palm oil using catalyst of barium hydroxide, MATEC Web Conf., 156, 06004.
Qu, Y., Peng, S., Wang, S., Zhang, Z. and Wang, J., 2009, Kinetic study of esterification of lactic acid with isobutanol and n-butanol catalyzed by ion-exchange resins, Chinese J. Chem. Eng., Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP), 17 (5), 773–780.
Shi, N., Liu, Q., He, X., Cen, H., Ju, R., Zhang, Y. and Ma, L., 2018, Production of lactic acid from cellulose catalyzed by easily prepared solid Al2(WO4)3, Bioresour. Technol. Reports, 5, 66–73.
Sun, X., Wang, Q., Zhao, W., Ma, H. and Sakata, K., 2006, Extraction and purification of lactic acid from fermentation broth by esterification and hydrolysis method, Sep. Purif. Technol., 49 (1), 43–48.
Wang, J., Yao, G. and Jin, F., 2017, One-pot catalytic conversion of carbohydrates into alkyl lactates with Lewis acids in alcohols, Mol. Catal., 435 (800), 82–90.
Zhao, W., Sun, X., Wang, Q., Ma, H. and Teng, Y., 2009, Lactic acid recovery from fermentation broth of kitchen garbage by esterification and hydrolysis method, Biomass and Bioenergy, 33 (1), 21–25.
DOI: https://doi.org/10.22146/jrekpros.44195
Article Metrics
Abstract views : 1935 | views : 3600Refbacks
- There are currently no refbacks.
Copyright (c) 2019 The authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.