Pelarutan Emas pada Pelindian Konsentrat Emas Hasil Roasting Menggunakan Reagen Tiosianat

https://doi.org/10.22146/jrekpros.41519

Fika Rofiek Mufakhir(1*), J M Sinaga(2), Soesaptri Oediyani(3), Widi Astuti(4)

(1) Balai Penelitian Teknologi Mineral, Lembaga Ilmu Pengetahuan Indonesia Jl Ir. Sutami Km 15 LIPI, Lampung, 35361
(2) Program Studi Teknik Metalurgi, Fakultas Teknik, Universitas Sultan Ageng Tirtayasa Kampus B UNTIRTA, Jalan Jenderal Sudriman Km.3, Banten, 42435
(3) Program Studi Teknik Metalurgi, Fakultas Teknik, Universitas Sultan Ageng Tirtayasa Kampus B UNTIRTA, Jalan Jenderal Sudriman Km.3, Banten, 42435
(4) Balai Penelitian Teknologi Mineral, Lembaga Ilmu Pengetahuan Indonesia Jl Ir. Sutami Km 15 LIPI, Lampung, 35361
(*) Corresponding Author

Abstract


A B S T R A C T

Dissolution of gold from roasting concentrate of gold ore using potassium thiocyanate with the presence of ferric chloride as an oxidizer was investigated. The concentrate was taken from Lengkukai gold mine. Gold ore particles under 53 µm in size were roasted at varied temperature, separated using wet magnetic separator, and finally leached. The X-ray diffraction (XRD) analysis showed that there were phase changes after roasting with the emergence of new phases such as hematite, pyrrhotite, and almandine. Leaching of gold concentrate after roasting and magnetic separation showed that gold was in non-magnetic concentrate at 950oC with the highest gold dissolution of 0.95 mg/L, while magnet concentrate was completely absent. Experiments with the addition of Fe3+ ion oxidizers for 24-hour range did not have significant effect on gold dissolution. The highest gold concentration obtained of 2.29 mg/L was obtained at 12 hours with 0.1 M FeCl3. The increase of thiocyanate reagent concentrations, which showed a linear correlation to gold dissolution, produced up to 2.25 mg/L of gold concentration (12 hours at 0.3 M KSCN).

Keywords: ferric ion gold dissolution; gold concentrate; roasting; thiocyanate

 

A B S T R A K

Pelarutan emas dari konsentrat hasil roasting bijih emas tambang Lengkukai menggunakan reagen pelindi kalium tiosianat dengan penambahan ferric chloride sebagai oksidator telah diteliti. Partikel bijih emas dengan ukuran di bawah 53 µm di-roasting pada berbagai temperatur kemudian dipisahkan menggunakan pemisah magnetik basah dan akhirnya dilindi. Hasil analisis X-ray diffraction (XRD) menunjukkan adanya perubahan fase setelah roasting dengan munculnya fase-fase baru yaitu hematit, pirohitit dan almandin. Pelindian konsentrat emas hasil roasting dan pemisahan magnetik menunjukan emas berada pada konsentrat non magnet temperatur roasting 950 oC dengan pelarutan emas paling tinggi sebesar 0,95 mg/L, berbeda dengan konsentrat magnet yang sama sekali tidak ada. Percobaan dengan penambahan oksidator ion Fe3+ selama rentang 24 jam tidak memberikan efek yang signifikan terhadap pelarutan emas. Dari penelitian ini didapatkan konsentrasi emas tertinggi sebesar 2,29 mg/L pada 12 jam dengan konsentrasi FeCl3 0,1 M. Sedangkan penambahan konsentrasi reagen tiosianat, yang menunjukan hubungan linier terhadap pelarutan emas, menghasilkan konsentrasi besar hingga 2,25 mg/L selama 12 jam pada konsentrasi KSCN 0,3 M.

Kata kunci: ion besi III; konsentrat emas; pelarutan emas; roasting; tiosianat


Keywords


ferric ion gold dissolution; gold concentrate; roasting; thiocyanate

Full Text:

PDF


References

Adams, M., 2015, Advances in Gold Ore Processing, Mutis Liber Pty Ltd., Western Australia

Badan Geologi Kementrian ESDM., 2017, Executive Summary Pemutakhiran Data dan Neraca Sumber Daya Mineral Status 2016, Jakarta.

Badan Standar Nasional, 1998, Klarifikasi Sumberdaya Mineral dan Cadangan Amandemen 1, SNI-13-4726-1998.

Barbosa-Filho, O., and Monhemins, A.J., 1994, Iodide-thiocyanate leaching system for gold, Hydrometallurgy ’94, Springer, Dordrecht

Baghalha, M., 2012, The leaching kinetics of an oxide gold ore with iodide/iodine solutions, Hydrometallurgy, 113-114, 42-50.

Data LEADS Asia News Network, Six countries produce 91 % of gold in Asia, diambil dari http://www.nationmultimedia.com/detail/aec/30300363, diakses pada tanggal 15 November 2018.

Feceriova, J., Balaz, P., and Villachica, C. L., 2005, Thiosulfate leaching of silver, gold and bismuth from a complex sulfide concentrates, Hydrometallurgy, 77, 35-39.

Feng, D., and Deventer, J.S.J.V., 2007, The role of oxygen in thiosulphate leaching of gold, Hydrometallurgy, 85, 193-202.

Feng, D., and Deventer, J.S.J.V., 2011, Thiosulphate leaching of gold in the presence of orthophosphate and polyphosphate, Hydrometallurgy, 106, 38-45.

Handayani, S., dan Suratman., 2017, Biooksidasi: Teknologi Alternatif Pengolahan Bijih Emas Refraktori, Bandung: Puslitbang Teknologi Mineral dan Batubara, 13(3), 197 – 211.

Habashi, F., 1993, A Textbook of Hydrometallurgy, Métallurgie Extractive Quebec, Canada.

Hredzák, S., Tomanec, R.A., Matik, M., Šepelák, V., and Václavíková, M., 2006, Magnetic separation and analysis of products obtained from coal-fired power plant fly ashes of Nikola Tesla B (Serbia), Journal of Mining and Metallurgy, 42A.

Li, J, Safarzadeh, M.S., Moats, M.S., Miller, J.D., LeVier, K.M., Dietrich, M., and Wan, R.Y., 2012, Thiocyanate hydrometallurgy for the recovery of gold, Part II: The leaching kinetics, Hydrometallurgy, 113-114, 10-18.

Marsden, J. O. and House, C., 2009, The Chemistry of Gold Extraction 2nd Ed., Society for Mining, Metallurgy and Eploration, Inc, Colorado

Monhemius, J., abd Ball, S.P, 1995, Leaching of Dominican gold ores in iodide-catalysed thiocyanate solutions, Mineral Processing and Extractive Metallurgy IMM Transactions Section C, 104, C117-C124

Mufakhir, F. R., Astuti, W., Prasetyo, E., Sumardi, S., Sudibyo, Handoko, A.S., Junaedi, A., Marsas, N. dan Supriyatna, Y. I., 2019, Characterization of gold ore from tanggamus mine lampung province, IOP Conference Series: Materials Science and Engineering 478, 012018.

Orgul S., and Atalay, U., 2002, Reaction chemistry of gold leaching in thiourea solution for a Turkish gold ore, Hydrometallurgy, 67, 71-77.

Setiawan, I., Zulkarnain, I., Indarto, S., and Sudarsono, 2005, Alterasi dan mineralisasi di sayap barat Pegunungan Bukit Barisan: Kasus daerah Kota Agung dan sekitarnya Kabupaten Tanggamus - Propinsi Lampung, Jurnal RISET Geologi dan Pertambangan, 15 (1), 13-26.

Somasundaran, P. and Wang, D., 2006, Solution Chemistry: Minerals and Reagents, Elsevier, Amsterdam.

Sokic, M., Ilic, I., Zivkovic, D., and Vuckovic, N., 2008, Investigation of mechanism and kinetics of chalcopyrite concentrate oxidation process, Metalurgija, 47 (2), 109-113.

Yang, X., Moats, M. S., Miller, J.D., Wang, X., Shi, X., and Xu, H., 2010, Thiourea – thiocyanate leaching system for gold, Hydrometallurgy, 106 (1-2), 58-63

Yannopolous, J. C., 1991, The Extractive Metallurgy of Gold, Springer US, New York.



DOI: https://doi.org/10.22146/jrekpros.41519

Article Metrics

Abstract views : 460 | views : 540

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 The authors

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Rekayasa Proses  (print ISSN 1978-287X; online ISSN 2549-1490) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada. View website statistics.