Kajian Dampak Lingkungan pada Sistem Produksi Listrik dari Limbah Buah Menggunakan Life Cycle Assessment

https://doi.org/10.22146/jrekpros.36425

Fajar Marendra(1*), Anggun Rahmada(2), Agus Prasetya(3), Rochim Bakti Cahyono(4), Teguh Ariyanto(5)

(1) Magister Teknologi untuk Pengembangan Berkelanjutan (MTPB), Universitas Gadjah Mada, Jl. Teknika Utara, Pogung, Mlati, Kampus UGM, Yogyakarta, 55281
(2) Waste Refinery Center, Fakultas Teknik, Universitas Gadjah Mada, Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55281
(3) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada, Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55281
(4) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada, Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55281
(5) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada, Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55281
(*) Corresponding Author

Abstract


A B S T R A C T

Producing biogas by anaerobic digestion (AD) is a promising process that can simultaneously provide renewable energy and dispose solid waste safely. However, this process could affect environment e.g. due to greenhouse gas emissions. By life cycle assessment (LCA), we assessed the environmental impact (EI) of an integrated fruit waste-based biogas system and its subsystems of Biogas Power Plant Gamping. Data were collected from an actual plant in Gamping, Sleman, Yogyakarta, Indonesia that adopted a wet AD process at mesophilic condition. The results showed that the global warming potential (GWP) emission of the system reached 81.95 kgCO2-eq/t, and the acidification potential (AP), eutrophication potential (EP), human toxicity potential (HTPinf) and fresh water ecotoxicity (FAETPinf) emissions were low. The EI was mainly generated by two subsystems, namely, the electricity generation and the digestate storage. A comparison analysis showed that the GWP become the main contributor of environmental loads produced by Biogas Plant Gamping, Suazhou Biogas Model, Opatokun Biogas Model, Opatokun Pyrolisis Model, dan Opatokun Integrated System Anaerobic Digestion and Pyrolisis. The GWP impact control and reduction could significantly reduce the EI of the system. It has been shown that improving the technology of the process, the electricity generation and the digestate storage will result in the reduction of EI of the biogas system.

Keywords: environmental impact; fruit waste; life cycle assessment (LCA); renewable energy


A B S T R A K

Produksi listrik dari biogas dengan anaerobic digestion (AD) merupakan proses yang menjanjikan karena dapat menghasilkan energi listrik dan penanganan limbah padat dengan aman. Namun, proses ini mempengaruhi lingkungan akibat emisi gas rumah kaca. Penilaian dampak lingkungan (environmental impact atau EI) sistem biogas berbasis limbah terpadu dan subsistemnya terhadap Biogas Power Plant Gamping (BPG) dilakukan dengan metode life cycle assesement atau LCA. Data dikumpulkan dari plant yang sebenarnya di Gamping, Sleman, Yogyakarta, Indonesia yang mengadopsi proses AD basah pada kondisi mesofilik. Potensi pemanasan global (global warming potential atau GWP) dari sistem mencapai 81,95 kgCO2-eq/t, sedangkan potensi keasaman (acidification potential atau AP), potensi eutrofikasi (eutrophication potential atau EP), potensi toksisitas manusia (human toxicity potential atau HTPinf) dan ekotoksisitas air (fresh water ecotoxicity atau FAETPinf) potensi emisinya cukup rendah. Potensi EI terutama dihasilkan oleh dua subsistem, yaitu, pembangkit listrik dan penyimpanan digestate. Analisis perbandingan menunjukkan bahwa dampak GWP menjadi kontributor utama dari beban lingkungan yang dihasilkan oleh Biogas Plant Gamping, biogas model Suazhou, biogas model Opatokun, model pirolisis Opatokun, serta model integrasi AD dan pirolisis Opatokun. Pengendalian dan pengurangan dampak GWP secara signifikan dapat mengurangi EI dari sistem. Telah terbukti bahwa peningkatkan teknologi proses, pembangkit listrik dan penyimpanan digestate akan menghasilkan pengurangan EI dari sistem biogas.

Kata kunci: dampak lingkungan; energi terbarukan; life cycle assessment (LCA); limbah buah



Keywords


environmental impact; fruit waste; life cycle assessment (LCA); renewable energy

Full Text:

PDF


References

Ahn, H. K., Smith, M.C., Kondrad, S.L., and White, J.W., 2010, Evaluation of biogas production potential by dry anaerobic digestion of switchgrass-animal manure mixtures, Appl. Biochem. Biotechnol., 160(4), 965–975.

Ariyanto, T. Cahyono, R.B., Vente, A Mattheij, S. Millati, R., Sarto. Taherzadeh, M.J. and Syamsiyah, S. 2017, Utilization of fruit waste as biogas plant feed and its superiority compared to landfill, Int. J. Technol., 8(8), 1385.

Cahyari, K. and Putra, R., 2009, Process Design and Economic Evaluation of Indonesian Fruit Market Waste to Biogas and Fish Feed, Master Thesis. University of Borås, Borås.

Chen, L., Cong, R.G., Shu, B., and Mi, Z.F., 2017, A sustainable biogas model in China: The case study of Beijing Deqingyuan biogas project, Renew. Sustain. Energy Rev., 78(April), 773–779.

Chen, T., Shen, D., Jin, Y., Li, H., Yu, Z., Feng, H., Long, Y., and Yin, J., 2017, Comprehensive evaluation of environ-economic benefits of anaerobic digestion technology in an integrated food waste-based methane plant using a fuzzy mathematical model, Appl. Energy. Elsevier, 208(September), 666–677.

Codina Gironès, V., Moret, S., Peduzzi, E., Nasato, M., and Maréchal, F., 2017, Optimal use of biomass in large-scale energy systems: Insights for energy policy, Energy, 137, 789–797.

Cong, R. G., 2013, An optimization model for renewable energy generation and its application in China: A perspective of maximum utilization, Renew. Sustain. Energy Rev. Elsevier, 17, 94–103.

Dewan Energi Nasional, 2014, laporan Dewan Enrgi Nasional 2014. available at https://www.den.go.id/index.php/publikasi/download/23.

Hamelin, L. Baky, A., Cano-Bernal, J., Grönroos, J., Kuligowski, K., Pehme, S., Rankinen, K, Skura, D., Wenzel, H., Wesnæs, M., and Ziolkowsky, M., 2013, Reference life cycle assessment scenarios for manure management in the Baltic Sea Regions - An assessment covering six animal production, five BSR countries, and four manure types, available at

http://www.balticmanure.eu/download/Reports/lcareference_report_wp5_web.pdf,(December), pp. 1–77.

Heijungs, R. Heijungs, R., Guinee, J.B., Huppes, G., Lankreijer, R.M., Udo, De Haes, Sleeswijk, A.W., Ansems, A.M.M., Eggels, P.G., Duit, R., and Goede, H.P., 1992, Environmental Life Cycle Assessment of Products - Vol 2: Backgrounds. Centrum voor Milieukunde, Den Haag.

Hua, Y., Oliphant, M. and Hu, E. J., 2016, Development of renewable energy in Australia and China: A comparison of policies and status, Renew. Energy, 85, 1044–1051.

IPCC, 2006, Intergovernmental Panel on Climate Change 2006 IPCC Guidelines for National Greenhouse Gas, Expert Meet. Rep.,1–20.

Jin, Y. Chen, T., Chen, X., and Yu, Z., 2015, Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant’, Appl. Energy. 151, 227–236.

Kaparaju, P. Buendia, I., Ellegaard, L., and Angelidakia, I., 2008, Effects of mixing on methane production during thermophilic anaerobic digestion of manure: Lab-scale and pilot-scale studies, Bioresour. Technol., 99(11), 4919–4928.

Kloepffer, W., 2008, Life cycle sustainability assessment of products (with Comments by Helias A. Udo de Haes, p. 95), Int. J. Life Cycle Assess., 13(2), 89–94.

Kothari, R. Pandey, A. K., Kumar, S., Tyagi, V. V., and Tyagi, S. K. 2014, Different aspects of dry anaerobic digestion for bio-energy: An overview’, Renew. Sustain. Energy Rev, 39, 174–195.

Lijó, L. González-García, S., Bacenetti, J., and Moreira, M. T., 2017, The environmental effect of substituting energy crops for food waste as feedstock for biogas production, j. energy, 137,1130–1143.

Makaruk, A., Miltner, M. and Harasek, M., 2013, Biogas desulfurization and biogas upgrading using a hybrid membrane system: Modeling study, Water Sci. Technol., 67(2), 326–332.

Miltner, M., Makaruk, A. and Harasek, M., 2017, Review on available biogas upgrading technologies and innovations towards advanced solutions, J. Clean. Prod., 161, 1329–1337.

Nasir, I. M., Ghazi, T. I. M. and Omar, R., 2012, Production of biogas from solid organic wastes through anaerobic digestion: A review, Appl. Microbiol. Biotechnol., 95(2), 321–329.

Nielsen, M., Nielsen, O., Kenneth, and Plejdrup, M., 2014, Danish Emission Inventories. Available at: http://dce2.au.dk/pub/SR102.pdf.

Nielsen, M. Nielsen, O-K., Plejdrup, M., and Hjelgaard, K., 2010, Danish emission inventories for stationary combustion plants: Inventories until 2008, NERI Technical Report no. 795. National Environment Research Institute: Aarhus University.

Niesner, J., Jecha, D. and Stehlík, P., 2013, Biogas upgrading technologies: State of art review in european region, Chem. Eng. Trans., 35, 517–522.

Nurrihadini, 2009, Karakterisasi Sampah Buah Pasar Buah Gamping sebagai Bahan Baku Alternatif Produksi Biogas, Skripsi Sarjana, Universitas Gadjah Mada, Yogyakarta.

Opatokun, S. A., Lopez-Sabiron, A., Ferreira, G., and Strezov, V., 2017, Life Cycle Analysis of Energy Production from Food Waste through Anaerobic Digestion, Pyrolysis and Integrated Energy System, Sustainability, 9(10), 1804.

Pathak, H. Jain, N., Bhatia, A., Mohanty, S., Gupta, N., 2009, Global warming mitigation potential of biogas plants in India’, Environ. Monit. Assess., 157(1–4), 407–418.

Poeschl, M., Ward, S. and Owende, P. 2010, Prospects for expanded utilization of biogas in Germany, Renew. Sustain. Energy Rev., 14(7), 1782–1797.

Rahmani, P., Hartono, D. M. dan Kusnoputranto, H., 2013, Kajian Kelayakan Pemanfaatan Biogas Dari Pengolahan Air Limbah Untuk Memasak, Ilmu Lingkung., 11(2), 132–140.

Saady, N. M. C. and Massé, D. I. ,2015, Impact of organic loading rate on the performance of psychrophilic dry anaerobic digestion of dairy manure and wheat straw: Long-term operation., Bioresour. Technol., 182, 50–7.

Scano, E. A. Asquer, C., Pistis, A., Ortu, L., Demontis, V., and Cocco, D., 2014, Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant, Energy Convers. Manag., 77, 22–30.

Schiavon Maia, D. C. Cardoso, F.H., Frare, L. M., Gimenes, M. L, Pereira, N. C., 2014, Purification of Biogas for Energy Use, Iconbm: Int. Conf. Biomass, Pts 1 2, 37(1), 643–648.

Sitorus, B., Sukandar dan Panjaitan, S. D., 2013, Biogas recovery from anaerobic digestion process of mixed fruit-vegetable wastes, Energy Procedia., 32, 176–182.

Weiland, P., 2003, production and energetic use of biogas from energy crops and wastes in Germany, Appl. Biochem. Biotechnol., 109(1–3), 263–274.

Williams, R.B., Davis, Ely, C., Martynowicz, T., dan Kosusko M., 2016, Evaluating the Air Quality, Climate & Economic Impacts of Biogas Management Technologies’, (September). Available at: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100QCXZ.PDF?Dockey=P100QCXZ.PDF.

Zalizar, L., Relawati, R. dan Ariadi, B. Y.,2013, Potensi produksi dan ekonomi biogas serta implikasinya pada kesehatan manusia, ternak dan lingkungan’, J. Ilmu-Ilmu Peternak., 23(3), 32–40.

Zhang, Q., Hu, J. and Lee, D. J., 2016, Biogas from anaerobic digestion processes: Research updates, Renew. Energy, 98,108–119.



DOI: https://doi.org/10.22146/jrekpros.36425

Article Metrics

Abstract views : 6074 | views : 6377

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 The authors

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.