Perspektif Model Matematika pada Penyebaran COVID-19 dengan Karantina
Ismiatul Khusna(1*)
(1) Universitas Gadjah Mada
(*) Corresponding Author
Abstract
This research discussed about mathematical model for the spread of coronavirus disease (COVID-19) by isolation. In this case, the population was divided into 6 classes, they are suspected, exposed, isolated, infected, hospitalized, and recovered. In this research, a modified SEIR model was formulated by considering the \textit{hospitalized}, and isolated classes. Furthermore, the free disease and endemic equilibrium points were found along with the local stability for both equilibrium points. Both of equilibrium points were locally asymptotically stable if the certain conditions was satisfied. The Next Generation matrix method was used to determine the basic reproduction number and global stability of free disease equilibrium point. Numerical simulation was presented to describe the model's behavior, and based on the elasticity analysis on the basic reproduction number, several parameters that affect COVID-19 spreading was exist.
Keyword : COVID-19, isolation, basic reproduction number.
Pada penelitian ini dibahas tentang model matematika penyebaran COVID-19 dengan karantina. Dalam hal ini, populasi dibagi menjadi 6 kelas, yakni kelas suspected, exposed, isolated, infected, hospitalized, dan recovered. Pada penelitian ini, dibentuk model matematika yang memodifikasi model SEIR dengan mempertimbangkan adanya kelas karantina dan hospitalized. Selanjutnya, dicari titik ekuilibrium bebas penyakit dan endemik dan diselidiki sifat kestabilan dari kedua titik ekuilibrium tersebut. Titik ekuilibrium bebas penyakit dan endemik stabil asimtotik lokal jika memenuhi syarat-syarat tertentu. Metode Next Generation Matrix digunakan untuk menentukan bilangan reproduksi dasar dan kestabilan global titik ekuilibrium bebas penyakit. Simulasi numerik digunakan untuk menggambarkan perilaku dari model yang telah diperoleh kemudian berdasarkan analisis sensitivitas bilangan reproduksi dasar, diperoleh beberapa parameter yang berpengaruh terhadap penyebaran COVID-19.
Kata Kunci : COVID-19, karantina, bilangan reproduksi dasar.
Keywords
Full Text:
PDF KhusnaReferences
Dipo Aldila, dkk., A Mathematical Study on the Spread of COVID-19 Considering Social Distancing and Rapid Assessement : The Case of Jakarta, Indonesia, Elsevier : Chaos, Solitons, and Fractals (139) (2020), 110042.
WHO., https://covid19.who.int. (2020).
Satgas Covid-19., https://covid19.go.id. (2020).
W. Ming, J.V. Huang, dan C.J.P. Zhang., Breaking down of the healthcare system : mathematical modelling for controlling the novel coronavirus (2019-CoV) outbreak in Wuhan, China, medRxiv and bioRxiv (2020).
I. Nesteruk., Statistics-based predictions of coronavirus epidemic spreading in Mainland China, Innovative Biosystem and Bioengineering (2020), Vol. 4, no. 1, pp. 13-18.
Faical Ndairou, Ivan Area, Juan J. Nieto, dan Delfim F.M. Torres, Mathematical Modelling of COVID-19 Transmisson Dynamics With a Case Study of Wuhan, Elsevier : Chaos, Solitons, and Fractals (135) (2020), 109846.
Anwar Zeb, Ebraheem Alzahrani, Vedat Suat E., dan Gul Zaman, Mathematical Model for Coronavirus Disease 2019 (COVID-19) Containing Isolation Class, Hindawi : Biomed Research International (2020), 3452402, Vol. 7.
Suwardi Annas, dkk., Stability Analysis and Numerical Simulation of SEIR Model for Pandemic COVID-19 Spread In Indonesia, Elsevier : Chaos, Solitons, and Fractals (139) (2020), 110072.
Novy Reandy.S., Muhammad Ikhwan, Suyanto Suyanto, dan Virasakdi Chongsuvivatwong., Optimal Control on a Mathematical Model to Pattern the Progression of Coronavirus Disease 2019 (COVID-19) in Indonesia, Global Health Research and Policy. (2020), Vol. 1-12.
Fajar Adi. K., Nanang. S., Irwan. E., Andreasta. M.,, Model Berbasis SIR Dalam Prediksi Awal Penyebaran COVID-19 Di Daerah Istimewa Yogyakarta (DIY), Jurnal Matematika Thales (JMT) (2020), Vol. 02-01.
Ahmadi dan Widodo., Local Stability of Malware Propagation Model on Network Computer with Two Time Delay, AIP Conference Proceedings (2020).
Bappenas., https://bappenas.go.id.
Bnpb., https://bnpb-inacovid19.hub.arcgis.com
DOI: https://doi.org/10.22146/jmt.67398
Article Metrics
Abstract views : 329 | views : 169Refbacks
- There are currently no refbacks.
Copyright of Jurnal Matematika Thales ISSN 2715-1891 (Print).
Jumlah Kunjungan: View My Stats
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.