Spline Semiparametric Regression Model Estimation on Data with Outliers Using Robust M-Estimation Method

https://doi.org/10.22146/jmt.51901

Putri Nilam Cayo(1*)

(1) Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Spline semiparametric regression is a regression model that combines parametric components and nonparametric components in one model where the nonparametric components are approximated by spline regression. The estimation method that is generally used to estimate spline semiparametric regression model is least square method. However, the estimation constructed by this method is sensitive to outliers, causing the estimation of parameter values to be biased and the interpretation of results to be inaccurate. In overcoming this problem, the outliers cannot be eliminated because the outliers can contain important information that cannot be provided by other observations. Therefore, we need an estimation method that is resistantto outliers. It is called robust method.The robust method used in this study is M-estimation method. M-estimation method estimates parameters by minimizing the objective function of the residual. The result shows that M-estimation method produces a smaller GCV (Generalized Cross Validation) value than least square method’s.Thus, the parameter estimators generated by M-estimation method are better than least square method’s. Spline semiparametric regression is a regression model that combines parametric components and nonparametric components in one model where the nonparametric components are approximated by spline regression.The estimation method that is generally used to estimate spline semiparametric regression model is least square method. However, the estimation constructed by this method is sensitive to outliers, causing the estimation of parameter values to be biased and the interpretation of results to be inaccurate. In overcoming this problem, the outliers cannot be eliminated because the outliers can contain important information that cannot be provided by other observations. Therefore, we need an estimation method that is resistantto outliers. It is called robust method.The robust method used in this study is M-estimation method. M-estimation method estimates parameters by minimizing the objective function of the residual. The result shows that M-estimation method produces a smaller GCV (Generalized Cross Validation) value than least square method’s.Thus, the parameter estimators generated by M-estimation method are better than least square method’s. Keywords : M-Estimation, Outlier, Robust, Spline Semiparametric Regression

Full Text:

PDF Cayo


References

Budiantara, I.N., Suryadi, F., Otok, B.W., dan Guritno, S., Pemodelan B-Spline dan MARS pada Nilai Ujian Masuk terhadap IPK Mahasiswa Jurusan Disain Komunikasi Visual UK. Petra Surabaya, Jurnal Teknik Industri, 8 (2006), 1-13.

Draper, N.R. dan Smith, H., Applied Regression Analysis, Third Edition, John Wiley and Sons, Inc., New York, 1998.

Eubank, R.L., Spline Smoothing and Nonparametric Regression, Second Edition, Marcel Dekker, Inc., New York, 1999.

Gao, J. dan Shi, P., M-Type Smoothing Splines in Nonparametric and Semiparametric Regression Models, Statistica Sinica, 7 (1997), 1155-1169.

Huber, P.J. dan Ronchetti, E., Robust Statistics, John Wiley and Sons, Inc., New York, 2009.

Hubert, M. dan Debruyne, M., Minimum Covariance Determinant, WIREs Computational Statistics, 2 (2010), 36-43.

Lee, T.C.M. dan Oh, H.S., Robust Penalized Regression Spline Fitting with Application to Additive Mixed Modeling, Computational Statistics - Springer, 22 (2007), 159-171.

Myers, R.H, Classical and Modern Regression with Application, Second Edition, Duxbury/Thompson Learning, Boston, 1990.

Pradewi, E.D. dan Sudarno, Kajian Estimasi-M IRLS Menggunakan Fungsi Pembobot Huber dan Bisquare Tukey pada Data Ketahanan Pangan di Jawa Tengah, Media Statistika, 5 (2012), 1-10.

Rousseeuw, P. dan Leroy, A., Robust Regression and Outlier Detection, John Wiley and Sons, Inc., New York, 1987.

Soemartini, Pencilan (Outlier), Penerbit Universitas Padjajaran, Bandung, 2007.



DOI: https://doi.org/10.22146/jmt.51901

Article Metrics

Abstract views : 342 | views : 319

Refbacks

  • There are currently no refbacks.



Copyright of Jurnal Matematika Thales ISSN 2715-1891 (Print).

Jumlah Kunjungan: View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JMT Indexed by: