Fabrikasi Mirror-like Surface Bahan Commercially-pure Titanium (CP-Ti) Menggunakan Metode Electropolishing Untuk Aplikasi Biomedis

https://doi.org/10.22146/jmdt.46742

Martin Andre Setyawan(1*), Gunawan Setia Prihandana(2), Muslim Mahardika(3)

(1) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada
(2) Departemen Fisika, Fakultas Sains dan Teknologi, Universitas Airlangga, Kampus C Mulyorejo, Surabaya – 60115
(3) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Microfilter adalah sebuah perangkat micro-dialysis yang telah terbukti efisien dalam membuang limbah metabolik seperti urea, asam urat, dan kreatinin dari darah. Perangkat microfilter dibuat dengan merakit metal structural layer dan membran nanoporous polyethersulfone. Dalam penelitian ini, metal structural layer yang desainnya telah dimodifikasi dengan mengadopsi bentuk maze-shaped difabrikasi menggunakan wire-EDM. Kemudian metode electropolishing diimplementasikan pada metal structural layer bahan commercially-pure titanium (CP-Ti) untuk menghasilkan kualitas permukaan yang mengkilap atau mirror-like surface. Mirror-like surface dibutuhkan untuk mencegah biofouling, yaitu mengendapnya komponen darah pada bagian dinding atau side-wall pada metal structural layer. Mirror-like surface berhasil diperoleh pada parameter tegangan 20 V, gap 10 mm, penambahan 20 vol.% ethanol pada larutan elektrolit dan waktu proses 5 menit. Surface roughness minimum yang terukur menggunakan stylus profilometer adalah Ra = 0,227 µm.

Full Text:

PDF


References

Ahmad, S., (2009), Manual of Clinical Dialysis, Springer International Publishing, DOI: 10.1007/978-0-387-09651-3, eBook ISBN 978-0-387-09651-3.

Azar, A.T., (2013). Modeling and Control of Dialysis Systems. Springer. ISBN 978-3-642-27457-2.

Baroroh, D. K., (2014), Optimasi Electropolishing pada Pembuatan Multi-layered Microfilter dengan Pendekatan Full Factorial Design, Skripsi, Jurusan Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta.

Besterfield, D. H.,(2013), Quality Improvement-9th edition, Pearson Education, Inc., publishing as Prentice Hall, ISBN-13: 978-0-13-262441-1.

Cheng, C. Li, S. Zhao, W. Wei, Q. Nie, S. Sun, S. Zhao, C. The hydrodynamic permeability and surface property of Polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. J. Membr. Sci. 2012, 417–418, 228.

Donghyun, K., Kyungsik S., Dahye S., Yonghwan K., Wonsub C., (2015), Effect of added ethanol in ethylene glycol–NaCl electrolyte on titanium electropolishing, Corrosion science 98 (2015) p 494-499, https://doi.org/10.1016/j.corsci.2015.05.0 57

El-Hofy, H. A. (2005). Advanced Machining Processes: Nontraditional and Hybrid Machining Processes, 1st ed. New York: McGraw-Hill. DOI: 10.1036/0071466940

Gu, Y. and Miki, N. (2007). A microfilter utilizing a polyethersulfone porous membrane with nanopores. J. Micromech. Microeng., 17, 2308–2315.

Gu, Y. and Miki, N. (2009). Multilayered microfilter using a nanoporous PES membrane and applicable as the dialyzer of a wearable artificial kidney. J. Micromech. Microeng. 19, 065031. doi:10.1088/0960-1317/19/6/065031

Gu, Y. and Miki, N., (2007), Microfilter Fabricated with PDMS and PES Membrane Applicable for Implantable Artificial Kidney, Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS 2007, 4160441, pp 63 - 67.

Gura, V., Rivara, M.B., Bieber, S, dkk, A wearable artificial kidney for patients with end-stage renal disease. JCI Insight. 2016;1(8):e86397. doi:10.1172/jci.insight.86397.

Ito, H., Prihandana, G. S., Sanada, I., Hayashi, M., Kanno, Y., & Miki, N. (2013). No-dialysate micro hemodialysis system. In17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013. (Vol. 2, 1326-1328). Chemical and Biological Microsystems Society.

Lase, W.N. (2011). Analisis Faktor-Faktor yang Mempengaruhi Kualitas Hidup Pasien Gagal Ginjal Kronis yang Menjalani Hemodialisa di RSUP. H. Adam Malik Medan. Skripsi. Fakultas Keperawatan Universitas Sumatera Utara. Medan.

Mahyudin, F. dan Hermawan H., (2016), Biomaterials and Medical Devices: A Perspective from an Emerging Country, Springer International Publishing, ISBN 978-3-319-14845-8.

Montgomery, D. C., (2009), Design and Analysis of Experiments, 5th ed., John Wiley & Sons Inc., New York.

National Kidney Foundation, (2002), KDOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification, Am J Kidney, 39: suppl 1.

Nugroho, Y.B. (2013). pembuatan cnc electro chemical machining serta pengujian permesinan pada pembuatan multi-layered microfilter dengan benda kerja stainless steel 204 terisolasi. Skripsi. Program Studi Teknik Mesin, Jurusan Teknik Mesin dan Industri Fakultas Teknik Universitas Gadjah Mada. Yogyakarta.

Ota, T., To, N., Kanno, Y., Miki, N. Evaluation of Biofouling for Implantable Micro Dialysis System. Conf Proc IEEE Eng Med Biol Soc, 2016, doi: 10.1109/EMBC.2016.7591103.

Prihandana, G.S., Ito, H., Sanada, I., Nishinaka, Y., Kanno, Y., Miki, N. Permeability and blood compatibility of nanoporous parylene film-coated polyethersufone membrane under long-term blood diffusion. J Appl Polym Sci 2014;131:40024. doi:10.1002/app.40024

Prihandana, G.S., Ito, H., Tanimura, K., Yagi, H., Hori, Y., Soykan, O., dkk. (2014b). Solute diffusion through fibrotic tissue formed around protective cage system for implantable devices. J. Biomed. Mater. Res. B doi:10.1002/jbm.b. 33298

Prihandana, G.S., Mahardika, M., Nishinaka, Y., Ito, H., Kanno, Y., Miki, N., (2013). Electropolishing of Microchannels and its Application to Dialysis System, Journal of Biomanufacturing, p. 165. doi:10.1016/j.procir.2013.01.

Prihandana, G.S., Sanada, I., Ito, H., Noborisaka, M., Kanno, Y., Suzuki, T., Miki, N., (2013). Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES) Membrane. Materials 2013, 6, 4309-4323; doi: 10.3390/ma6104309

Rosa, J. L., Robin, A., Silva, M. B., Baldan, Carlos A., Peres, Mauro P., (2009), Electrodeposition of copper on titanium wires: Taguchi experimental design approach, Journal of Materials Processing Technology, v. 209, p. 1181-1188.

Sajjad, H. Ling L., Dominique S., Elaine C. D., Sasha O. (2014). Electrochemical polishing as a 316L stainless steel surface treatment method: Towards the improvement of biocompatibility, Corrosion Science 87 (2014) 89–100, http://dx.doi.org/10.1016/j.corsci.2014.06 .010

Salim, S., (2016), Analisis Proses Polishing Pada Machining Center, Skripsi, Jurusan Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta.

Sawhney, G. S., (2007), Fundamentals of Biomedical Engineering, New Age International (P) Ltd., Publishers ,ISBN (13) : 978-81-224-2549-9

Setyawan, M.A., Sriani, T., and Prihandana, G.S., (2016), Design and Fabrication of Multi-Layered Microfilter by Electropolishing Technique, Applied Mechanics and Materials, Vol. 842, pp. 402 - 406.

Setyawan, M.A, (2016), Design and Fabrication of Maze-Shaped Multi-Layered Microfilter Using SS 316L by Electropolishing Technique, Skripsi, Universitas Muhammadiyah Yogyakarta, Yogyakarta.

Silma, A. A., (2017), Perancangan dan Manufaktur Microfilter pada Wearable Artificial Kidney, Skripsi, Jurusan Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta.

To, N., Sanada, I., Ito, H., Prihandana, G. S., Morita, S., Kanno, Y., & Miki, N. (2015). Water-Permeable Dialysis Membranes for Multi-Layered Microdialysis System. Frontiers in Bioengineering and Biotechnology, 3(June), 1–7. https://doi.org/10.3389/fbioe.2015.00070

Voort, G.F.V., (2004), Chemical and Electrolytic Polishing, ASM Handbook, Vol. 9: Metallography and Microstructures, p 281-293, ISBN 978-0-87170-706-2.

Wenten, I.G., Khoiruddin, Aryanti, P.T.P., akim, A.N. (2010). Pengantar Teknologi Membran, Diktat, Departemen Teknik Kimia Institut Teknologi Bandung, Bandung.



DOI: https://doi.org/10.22146/jmdt.46742

Article Metrics

Abstract views : 1412 | views : 1609

Refbacks

  • There are currently no refbacks.