Kemelimpahan dan Struktur Tingkat Trofik Serangga pada Tingkat Perkembangan Agroforestri Jati yang Berbeda di Nglanggeran, Gunungkidul Yogyakarta

https://doi.org/10.22146/jik.28287

Ananto Triyogo, Priyono Suryanto, Siti Muslimah Widyastuti, Aldino Dwi Baresi, Isnaini Fauziah Zughro,

(1) Departemen Silvikultur,Fakultas Kehutanan, Universitas Gadjah Mada, Jl. Agro No. 1, Bulaksumur, Sleman, 55281
(2) Departemen Silvikultur,Fakultas Kehutanan, Universitas Gadjah Mada, Jl. Agro No. 1, Bulaksumur, Sleman, 55281
(3) Departemen Silvikultur,Fakultas Kehutanan, Universitas Gadjah Mada, Jl. Agro No. 1, Bulaksumur, Sleman, 55281
(4) Sekolah Vokasi Program Studi Pengelolaan Hutan,Universitas Gadjah Mada,Jl. Sekip Unit I, Bulaksumur,Sleman, 55281
(5) Sekolah Vokasi Program Studi Pengelolaan Hutan,Universitas Gadjah Mada,Jl. Sekip Unit I, Bulaksumur,Sleman, 55281

Abstract


Modifikasi pemanfaatan lahan memiliki dampak baik ekonomi maupun ekologi. Perlindungan terhadap keanekaragaman hayati menjadi pusat perhatian dari sisi ekologi sementara pemanfaatan lahan demi produktivitas dianggap sebagai solusi ketahanan pangan. Serangga berada di dua isu tersebut yaitu konservasi dan ketahanan pangan. Penelitian ini bertujuan untuk mengetahui struktur komunitas serangga berdasarkan pada peran mereka dalam tingkatan trofik pada tiga tingkat perkembangan agroforestri (AF) jati yang berbeda (awal, tengah, lanjut). Pengambilan data dilakukan di Nglanggeran, Gunungkidul, Yogyakarta sepanjang musim kemarau (April, Mei, dan Juni 2016). Metode koleksi serangga yang digunakan adalah sweep net, pitfall dan sticky trap yang ditempatkan pada petak ukur (PU) 20 x 20 m2. Petak ukur dibuat dan diletakkan secara purposive pada masing-masing tingkatan AF. Total terdapat 8 PU yang terdiri dari 3 PU untuk tingkatan AF awal dan tengah, serta 2 PU untuk AF lanjut. Serangga yang tertangkap bervariasi berdasar pada tingkat perkembangan agroforestri dan bulan pengamatan. Terdapat perbedaan keragaman serangga (jumlah dan jenis) berdasarkan perbedaan tingkatan agroforestri (awal, tengah, dan lanjut) pada lahan lahan agroforestri berbasis jati di Desa Nglanggeran, Zona Batur Agung, Gunungkidul. Agroforestri awal dan tengah menunjukkan kemelimpahan serangga (ordo) terbanyak dengan proporsi tertinggi serangga yang berperan sebagai hama berasal dari ordo Lepidoptera, Diptera, Blattaria, Hymenoptera, Orthoptera, Coleoptera, Isoptera, dan Dermaptera. Tingkatan AF berpengaruh terhadap kehadiran serangga dari ordo Hymenoptera dan Diptera, lebih lanjut keragaman vegetasi pada agroforestri (awal dan tengah) dapat meningkatkan keragaman serangga baik yang berperan sebagai hama (trofik 2) maupun musuh alami (trofik 3).

Kata kunci: agroforestri; hama; jati; serangga; trofik

 

Insect Abundance and Its Structure Trophic Level on Different Level of Teak-Based Agroforestry Development at Nglanggeran Village, Gunungkidul District, Yogyakarta

Abstract

Modifications of land use have the economic and ecological implications. Protection upon biodiversity has been the center of concern on ecological side, while productivity of the land use has been considered a solution for food security. Insects are between these two major issues, namely conservation and food security.This study was aimed at tracing the structure of insect community based on its role on the trophic level on three different phases of teak-based agroforestry systems (early, middle, and advanced). The data was obtained in the area of Nglanggeran, Gunungkidul Regency of Yogyakarta during the dry season (April, May, and June 2016). Further, method of insect sample inventory utilized sweep net, pitfall trap, and sticky trap placed on measured area of 20 x 20 m2. The plots were placed purposively on each of agroforestry land, with the total of 8 plots, consisting of 3 areas of early and middle levels of agroforestry land, and 2 for late phase. Catched insects varied according to agroforestry growth and observation time. This research suggests that insect’s variety (abundance and morphospecies) is found based on agroforestry levels (early phase, middle phase and late phase) on observed teak agroforestry land in Nglanggeran Village of Batur Agung Zone, Gunungkidul. Early and middle agroforestry showed an abundance of insects (order), in which the largest proportion of them is categorized as pest (Lepidoptera, Diptera, Blattaria, Hymenoptera, Orthoptera, Coleoptera, Isoptera, and Dermaptera). The growth level of agroforestry has a direct impact on the presence of insects of Hymenoptera and Diptera orders. Furthermore, the variety of vegetation in early and middle agroforestry could increase the variety of insects functioning as either pest (trophic 2) or natural predators (trophic 3).



Keywords


agroforestry; insect; pest; teak; trophic

Full Text:

PDF


References

Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters 9: 1146–1156.

Bestelmeyer BT, Wiens JA. 1996. The Effects of land use structure of ground foraging ant community in the Argentinean Chaco. Ecolological Applications 6:1225 -1240. 

Bisseleua HBD, Fotio D, Missoup AD, Vidal S. 2013. Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. PloS one 8(3): p.e56115.

Brose U, Hillebrand H. 2016. Biodiversity and ecosystem functioning in dynamic landscapes. Philosophical Transactions of the Royal Society B 371:20150267.

Bronstein JL, Alarcón R, Geber M. 2006.The evolution of plant–insect mutualisms.New Phytologist 172: 412-428.

Buchan PB, Moreton RB. 1981. Flying and walking of small insects (Musca domestica) recorded differentially with a standing-wave radar actograph. Physiological Entomology 6(5): 149 – 155.

Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C. 2011. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecology letters 14(9):922-932.

Damayanti A, Triyogo A, Ratnaningrum YWN. 2016. Pattern of insect community associated with Santalum album. Proceeding of International conference on biodiversity .19 – 20 March 2016, Yogyakarta,.

Damman H. 1993. Patterns of herbivore interaction among herbivore species. Hlm. 132–169 dalam Stamp NE, Casey TM, editor. Caterpillars: Ecological and evolutionary constraints on foraging. Chapman & Hall, New York.

Denno RF, Kaplan I. 2007. Plant-mediated interactions in herbivorous insects: mechanisms, symmetry, and challenging the paradigms of competition past. Dalam Ohgushi T, Craig TP, Price PW, editor. Ecological communities: Plant mediation in indirect interaction
webs. Cambridge University Press.

Kaspari M, Weiser MD. 2000. Ant activity along moisture gradients in a neotropical forest. Biotropica 32(4):703-711.

Kooyman C, Onck RFM. 1987. Distribution of termite (Isoptera) species in southwestern Kenya in relation to land use and the morphology of their galleries. Biology and Fertiliy of Soils 3:69

Krebs CJ. 2009. Ecology: The experimental analysis of distribution and abundance.6th ed. Hlm. 655. .

Ludwig JA, Reynolds JF. 1988. Statistical ecology. J. Wiley. New York.

McKinney ML. 2008. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems 11:161–176.

Moreno CE, Sánchez-rojas G, Pineda E, Escobar F. 2007. Shortcuts for biodiversity evaluation: a review of terminology and recommendations for the use of target groups, bioindicators and surrogates. International Journal of Enviromental Health 1:71–86.

Ohgushi T, Craig TP, Price PW. 2007. Ecological communities:plant mediation in indirect interaction webs. Cambridge University Press.

Pumariño L, Sileshi GW, Gripenberg S, Kaartinen R, Barrios E, Muchane, MN, Midega C, Jonsson M. 2015. Effects of agroforestry on pest, disease and weed control: a meta-analysis. Basic and Applied Ecology 16(7): 573-582.

Quinkenstein A, Woellecke J, Böhm C, Gruenewald H, Freese D, Schneider BU, Huettl RF. 2009. Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environmental Science and Policy 12(8):1112-1121.

Ribeiro-Júnior MA, Rossi R, Miranda CL, Ávila-Pires TCS. 2011. Influence of pitfall trap size and design on herpetofauna and small mammal studies in a Neotropical Forest. Zoologia 28(1):80-91.

Saha SK. 2006. Agroforestry and biodiversity conservation in tropical landscapes. 2004. Hlm. 524 dalam Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AN, editor. Island Press, Washington DC.

Samson DA, Rickart EA, Gonzales PC. 1997. Ant diversity and abundance along anelevational gradient in the Phillippines. Biotropica 29:349 - 363.

Schoonhoven LM, Jermy T, Van Loon JJA. 1998. Plants as insect food: not the ideal. Hlm.83-120. Insect-plant biology.Springer, US.

Semakula LM, Taylor RAJ, Pitts CW. 1989. Flight behavior of Musca domestica and Stomoxys calcitrans (Diptera: Muscidae) in a Kansas dairy barn. Journal of Medical Entomology 26(6): 501-509.

Suryanto P, Putra ETS. 2012. Traditional enrichment planting in agroforestry marginal land Gunungkidul, Java, Indonesia. Journal of Sustainable Development 5(2): 77-87.

Suryanto P, Sabarnurdin MS, Tohari. 2005. Resouces sharing dynamics in agroforestry systems: Basic consideration in arrangement strategy silviculture. Jurnal Ilmu Pertanian 12(2): 168-181.

Triyogo A, Widyastuti SM. 2012. Peran serangga sebagai vektor penyakit karat puru pada sengon (Albizia falcataria L. Fosberg). Jurnal Agronomi Indonesia 40(1):77-82.

Triyogo A, Yasuda H. 2013. Effect of host-plant manipulation by a gall-inducing insect on abundance of herbivores on chestnut trees. Applied Entomology and Zoology 48(3):345-353.

Tscharntke T, et al. 2011. Multifunctional shade-tree management in tropical agroforestry landscapes – A review. Journal of Applied Ecology48: 619–629 

Uno S, Cotton J, Philpott SM. 2010 Diversity, abundance, and species composition of ants in urban greenspaces. UrbanEcosystem 13:425–441.

Utsumi S, Ohgushi T. 2008. Host plant variation in plant-mediated indirect effects: moth boring-induced susceptibility of willows to a specialist leaf beetle. Ecological Entomology 33(2):250-260.

Vehviläinen H, Koricheva J, Ruohomäki K. 2007. Tree species diversity influences herbivore abundance and damage: meta-analysis of long-term forest experiments. Oecologia 152: 287-298

Weidenmüller A, Mayr C, Kleineidam CJ, Roces F. 2009. Preimaginal and adult experience modulates the thermal response behavior of ants. Current Biology 19(22):1897-1902.

Wilby A, Thomas MB. 2002. Are the ecological concepts of assembly and function of biodiversity useful frameworks for understanding natural pest control? Agricultural and Forest Entomology 4:237-43. 



DOI: https://doi.org/10.22146/jik.28287

Article Metrics

Abstract views : 383 | views : 421

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Jurnal Ilmu Kehutanan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Redaksi Jurnal Ilmu Kehutanan
Fakultas Kehutanan Universitas Gadjah Mada
Jl. Agro No 1, Bulaksumur, Sleman 55281
Telp. (0274) 512102, 550541, 6491420
Fax. (0274) 550541 E-mail : jik@ugm.ac.id
website : jurnal.ugm.ac.id/jikfkt/

 

Indexed by :

 

Jurnal Ilmu Kehutanan/Journal Forest Science is under the license of Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 

Creative Commons License

View My Stats