Hiperdominansi Jenis dan Biomassa Pohon di Taman Nasional Gunung Gede Pangrango, Indonesia

https://doi.org/10.22146/jik.24903

Andes Hamuraby Rozak(1*), Sri Astutik(2), Zaenal Mutaqien(3), Didik Widyatmoko(4), Endah Sulistyawati(5),

(1) Kebun Raya Cibodas, Lembaga Ilmu Pengetahuan Indonesia, Jl. Kebun Raya Cibodas, Cipanas, Cianjur, Jawa Barat 43253; Telepon: 0263 – 512233
(2) Kebun Raya Cibodas, Lembaga Ilmu Pengetahuan Indonesia, Jl. Kebun Raya Cibodas, Cipanas, Cianjur, Jawa Barat 43253; Telepon: 0263 – 512233
(3) Kebun Raya Cibodas, Lembaga Ilmu Pengetahuan Indonesia, Jl. Kebun Raya Cibodas, Cipanas, Cianjur, Jawa Barat 43253; Telepon: 0263 – 512233
(4) Pusat Konservasi Tumbuhan Kebun Raya, Lembaga Ilmu Pengetahuan Indonesia (LIPI), Jl. Ir. H. Juanda No. 13 Bogor, Jawa Barat 16003
(5) Sekolah Ilmu dan Teknologi Hayati, Institut Teknologi Bandung, Jl.Ganesa 10 Bandung, Jawa Barat 40132
(*) Corresponding Author

Abstract


Hiperdominansi jenis dan biomassa adalah suatu konsep yang menjelaskan pentingnya sebagian kecil jenis dan biomassa relatif terhadap rata-rata biomassa pohon pada suatu kawasan hutan. Pemahaman pada konsep ini berimplikasi pada upaya monitoring kawasan hutan khususnya bagi spesies penyumbang biomassa terbesar dan membantu pemahaman pada proses restorasi ekologinya. Analisis hiperdominansi jenis dan kontribusi pohon besar (DBH>50 cm) terhadap biomassa pohon telah dilakukan di kawasan hutan Taman Nasional Gunung Gede Pangrango (TNGGP). Sejumlah 26 plot pengamatan telah dibuat pada 26 level ketinggian yang berbeda (1013-3010 m dpl) dan dikelompokkan menjadi tiga zona yaitu zona submontana, montana, dan subalpine. Pohon-pohon yang terdapat dalam plot pengamatan kemudian dikelompokkan menjadi 3 kelompok diameter yaitu pohon kecil (5-30 cm), pohon sedang (30-50 cm), dan pohon besar (>50 cm). Hasil analisis menunjukkan bahwa hiperdominansi jenis terjadi di hutan TNGGP. Empat jenis pohon dari 114 jenis yang teridentifikasi yaitu Schima wallichii, Altingia excelsa, Vaccinium varingiaefolium, dan Castanopsis acuminatissima merepresentasikan 56,96% dari total biomassa pohon yang ada di plot TNGGP. Lebih lanjut, pohon kecil dan besar diketahui sebagai penyumbang biomassa yang sangat signifikan dibandingkan pohon sedang. Pada level plot penelitian, pohon dengan DBH>50 cm yang berjumlah 192 individu (atau 13%) dari 1471 individu pohon mampu merepresentasikan 61,4% dari total biomassanya. Namun demikian, pada level kawasan hutan, pohon kecil dan pohon besar memiliki kontribusi yang sama signifikannya terhadap biomassa per hektarnya yaitu masing-masing sebesar 40,9% dan 38,77%. Hasil-hasil tersebut menunjukkan bahwa hanya sedikit jenis pohon saja mampu merepresentasikan sebagian besar dari total biomassa pohon. Pohon-pohon kecil dan besar diketahui memainkan peranan yang penting dalam biomassa di hutan TNGGP.


Hyperdominance of Tree Species and Biomass in Mount Gede Pangrango National Park, Indonesia

Abstract

The hyperdominance of tree species and biomass is a concept explaining the importance of a small portion of species and biomass relative to the average of biomass in a forested area. Understanding this concept has important implication on forest monitoring, especially to monitor the most significant species that show high contributes on biomass and its ecological restoration. Hyperdominance analysis of tree species and large trees (DBH > 50 cm) contribution to tree biomass were investigated in tropical mountain forest of Mount Gede Pangrango National Park (TNGGP). A total of 26 sample plots were installed in 26 different altitude between 1013 and 3010 m asl and grouped into three zones i.e. submontane, montane, and subalpine zones. Trees within plot were identified, measured, and grouped into three groups i.e. small (DBH 5-30 cm), medium (DBH 30-50 cm), and large trees (DBH>50 cm). The result showed that there were hyperdominant in TNGGP. Four species from 114 identified tree species i.e. Schima wallichii, Altingia excelsa, Vaccinium varingiaefolium, and Castanopsis acuminatissima represented 56.96% of the total biomass in the plot level. Furthermore, only 13% of trees from 1471 trees responsible for 61.4% of the total tree biomass in the plot level. However, small and large trees have similar significant contribution to the average biomass in the forest level i.e. 40.9% and 38.77%, respectively. These results suggest that only few species represent a huge amount of biomass. Both small and large trees play important role in the forest biomass of TNGGP.



Keywords


biomass hyperdominance; large trees; Mount Gede Pangrango National Park; small trees; species hyperdominance

Full Text:

PDF


References

  1. Abdulhadi R, Adhikerana AS, Ubaidillah R, Suharna N. 2000. Preliminary study of the ecological impact of forest fires in G. Massigit, G. Gede-Pangrango National Park, West Java. The Korean Journal of Ecology 23:125–129. 
  2. Arrijani A. 2008. Vegetation structure and composition of the montane zone of Mount Gede Pangrango National Park. Biodiversitas, Journal of Biological Diversity 9:134–141. 
  3. Barlow J, Peres CA, Lagan BO, Haugaasen T. 2003. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters 6:6–8. 
  4. Bastin J-F et al. 2015. Seeing Central African forests through their largest trees. Scientific Reports 5:13156. 
  5. Basuki TM, van Laake PE, Skidmore AK, Hussin YA. 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management 257:1684–1694. 
  6. Boyle B et al. 2013. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14:16. 
  7. Brown S. 1997. Estimating biomass and biomass change of tropical forests: A primer. Food & Agriculture Org. 
  8. Brown S, Lugo AE. 1992. Aboveground biomass estimates for tropical moist forest of the Brazilian Amazon. Interciencia 17:8–18. 
  9. Chave J et al. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. 
  10. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12:351–366. 
  11. Clark DB, Clark DA. 1996. Abundance, growth and mortality of very large trees in neotropical lowland rain forest. Forest Ecology and Management 80:235–244. 
  12. Dossa GGO, Paudel E, Fujinuma J, Yu H, Chutipong W, Zhang Y, Paz S, Harrison RD. 2013. Factors Determining Forest Diversity and Biomass on a Tropical Volcano, Mt. Rinjani, Lombok, Indonesia. PLoS ONE 8:e67720. 
  13. Fauset S et al. 2015. Hyperdominance in Amazonian forest carbon cycling. Nature Communications 6. http://www.nature.com/ncomms/2015/150428/ncomms7857/full/ncomms7857.html (diakses Juli 2015). 
  14. Feldpausch TR et al. 2012. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9:3381–3403. 
  15. Hairiah K, Ekadinata A, Sari RR, Rahayu S. 2011. Pengukuran cadangan karbon dari tingkat lahan ke bentang lahan, 2nd edition. World Agroforestry Centre (ICRAF), Bogor, Indonesia. http://www.worldagroforestrycentre.org/sea/Publications/files/manual/MN0049-11.PDF (Diakses November 2014). 
  16. Helmi N, Kartawinata K, Samsoedin I. 2009. An undescribed lowland natural forest at Bodogol, the Gunung Gede Pangrango National Park, Cibodas Biosphere Reserve, West Jawa, Indonesia. Reinwardtia 13:33–44. 
  17. IPCC. 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Bueinda L., Miwa K, Ngara T, and Tanabe K. (eds). IGES. Available from http://www.ipcc-nggip.iges.or.jp/public/2006gl/. 
  18. Lindenmayer DB, Laurance WF, Franklin JF. 2012. Global decline in large old trees. Science 338:1305–1306. Lutz JA, Larson AJ, Freund JA, Swanson ME, Bible KJ. 2013. The importance of large-diameter trees to forest structural heterogeneity. PLoS ONE 8:e82784. 
  19. Mics F, Rozak AH, Kocsis M, Homoródi R, Hufnagel L. 2013. Rainforests at the beginning of the 21st century. Applied Ecology and Environmental Research 11:1–20. 
  20. Rejou-Mechain M, Tanguy A, Piponiot C, Chave J, Herault B. 2016. BIOMASS: An R package for estimating above-ground biomass and its uncertainty in tropical forests. https://cran.r-project.org/web/packages/BIOMASS/BIOMASS.pdf (diakses November 2016). 
  21. Remm J, Lõhmus A. 2011. Tree cavities in forests – The broad distribution pattern of a keystone structure for biodiversity. Forest Ecology and Management 262:579–585. 
  22. Abdulhadi R, Adhikerana AS, Ubaidillah R, Suharna N. 2000. Preliminary study of the ecological impact of forest fires in G. Massigit, G. Gede-Pangrango National Park, West Java. The Korean Journal of Ecology 23:125–129. 
  23. Arrijani A. 2008. Vegetation structure and composition of the montane zone of Mount Gede Pangrango National Park. Biodiversitas, Journal of Biological Diversity 9:134–141. 
  24. Barlow J, Peres CA, Lagan BO, Haugaasen T. 2003. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters 6:6–8. 
  25. Bastin J-F et al. 2015. Seeing Central African forests through their largest trees. Scientific Reports 5:13156. 
  26. Basuki TM, van Laake PE, Skidmore AK, Hussin YA. 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management 257:1684–1694. 
  27. Boyle B et al. 2013. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14:16. 
  28. Brown S. 1997. Estimating biomass and biomass change of tropical forests: A primer. Food & Agriculture Org. 
  29. Brown S, Lugo AE. 1992. Aboveground biomass estimates for tropical moist forest of the Brazilian Amazon. Interciencia 17:8–18. 
  30. Chave J et al. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. 
  31. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12:351–366. 
  32. Clark DB, Clark DA. 1996. Abundance, growth and mortality of very large trees in neotropical lowland rain forest. Forest Ecology and Management 80:235–244. 
  33. Dossa GGO, Paudel E, Fujinuma J, Yu H, Chutipong W, Zhang Y, Paz S, Harrison RD. 2013. Factors determining forest diversity and biomass on a tropical volcano, Mt. Rinjani, Lombok, Indonesia. PLoS ONE 8:e67720. 
  34. Fauset S et al. 2015. Hyperdominance in Amazonian forest carbon cycling. Nature Communications 6. http://www.nature.com/ncomms/2015/150428/ncomms7857/full/ncomms7857.html (diakses Juli 2015). 
  35. Feldpausch TR et al. 2012. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9:3381–3403. 
  36. Hairiah K, Ekadinata A, Sari RR, Rahayu S. 2011. Pengukuran cadangan karbon dari tingkat lahan ke bentang lahan, 2nd edition. World Agroforestry Centre (ICRAF), Bogor, Indonesia. http://www.worldagroforestrycentre.org/sea/Publications/files/manual/MN0049-11.PDF (Diakses November 2014). 
  37. Helmi N, Kartawinata K, Samsoedin I. 2009. An undescribed lowland natural forest at Bodogol, the Gunung Gede Pangrango National Park, Cibodas Biosphere Reserve, West Jawa, Indonesia. Reinwardtia 13:33–44. 
  38. IPCC. 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Bueinda L., Miwa K., Ngara T. and Tanabe K. (eds). IGES. Available from http://www.ipcc-nggip.iges.or.jp/public/2006gl/. 
  39. Lindenmayer DB, Laurance WF, Franklin JF. 2012. Global decline in large old trees. Science 338:1305–1306. Lutz JA, Larson AJ, Freund JA, Swanson ME, Bible KJ. 2013. The importance of large-diameter trees to forest structural heterogeneity. PLoS ONE 8:e82784. 
  40. Mics F, Rozak AH, Kocsis M, Homoródi R, Hufnagel L. 2013. Rainforests at the beginning of the 21st century. Applied Ecology and Environmental Research 11:1–20. 
  41. Rejou-Mechain M, Tanguy A, Piponiot C, Chave J, Herault B. 2016. BIOMASS: An R package for estimating above-ground biomass and its uncertainty in tropical forests. https://cran.r-project.org/web/packages/BIOMASS/BIOMASS.pdf (diakses November 2016).
  42. Remm J, Lõhmus A. 2011. Tree cavities in forests – The broad distribution pattern of a keystone structure for biodiversity. Forest Ecology and Management 262:579–585. 
  43. Rozak AH, Gunawan H. 2015. Altitudinal gradient affects on trees and stand attributes in Mount Ciremai National Park, West Java, Indonesia. Jurnal Penelitian Kehutanan Wallacea 4:93–99. 
  44. Rutishauser E, Noor’an F, Laumonier Y, Halperin J, Rufi’ie, Hergoualc’h K, Verchot L. 2013. Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. Forest Ecology and Management 307:219–225. 
  45. Sadili A, Kartawinata K, Kartonegoro A, Soedjito H, Sumadijaya A. 2009. Floristic composition and structure of subalpine summit habitats on Mt. Gede-Pangrango complex, Cibodas Biosphere Reserve, West Java, Indonesia. Reinwardtia 12:1–14. 
  46. Sist P, Mazzei L, Blanc L, Rutishauser E. 2014. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. Forest Ecology and Management 318:103–109. 
  47. Slik JWF. 2006. Estimating species-specific wood density from the genus average in Indonesian trees. Journal of Tropical Ecology 22:481. 
  48. Slik JWF et al. 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography 22:1261–1271. 
  49. Slik JWF et al. 2015. An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences 112:7472–7477. 
  50. Spracklen DV, Righelato R. 2014. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11:2741–2754. 
  51. Stephenson NL et al. 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507:90–93. 
  52. ter Steege H et al. 2013. Hyperdominance in the Amazonian Tree Flora. Science 342:1243092–1243092. van Steenis CGG, Hamzah A, Toha M. 1972. Mountain flora of Java, 1st edition. E.J. Brill, Leiden, The Netherlands. 
  53. Widyatmoko D, Astutik S, Sulistyawati E, Rozak AH. 2011. Carbon stock and biomass estimation of four different ecosystems within Cibodas Biosphere Reserve, Indonesia. Hlm. 91-96. Are climate change and other emerging challenges being met through successful achievement of Biosphere Reserve function? The 6th Southeast Asia Biosphere Reserves Network (SeaBRnet) Meeting, Unesco Office Jakarta, Cibodas Biosphere Reserve, Indonesia. 
  54. Widyatmoko D, Astutik S, Sulistyawati E, Rozak AH, Mutaqien Z. 2013. Stok karbon dan biomassa di Cagar Biosfer Cibodas, Indonesia. Hlm. 98–134. Konservasi biocarbon, lanskap dan kearifan lokal untuk masa depan: Integrasi pemikiran multidimensi untuk keberlanjutan. Kebun Raya Cibodas, Cibodas. 
  55. Yamada I. 1975. Forest ecological studies of the montane forest of Mt. Pangrango (I. Stratification and floristic composition of the montane rain forst near Cibodas). South East Asian Studies 13:402–426. 
  56. Yamada I. 1976a. Forest ecological studies of the montane forest of Mt. Pangrango (II. Stratification and floristic composition of the forest vegetation of the higher part of Mt. Pangrango). South East Asian Studies 13:513–534. 
  57. Yamada I. 1976b. Forest ecological studies of the montane forest of Mt. Pangrango (III. Litter fall of the tropical montane forest near Cibodas). South East Asian Studies 14:194–229. 
  58. Yamada I. 1977. Forest ecological studies of the montane forest of Mt. Pangrango (IV. Floristic composition along the altitude). South East Asian Studies 15:226–534. 
  59. Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J. 2009. Global wood density database. http://hdl.handle.net/10255/dryad.234.



DOI: https://doi.org/10.22146/jik.24903

Article Metrics

Abstract views : 267 | views : 120

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Jurnal Ilmu Kehutanan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Redaksi Jurnal Ilmu Kehutanan
Fakultas Kehutanan Universitas Gadjah Mada
Jl. Agro No 1, Bulaksumur, Sleman 55281
Telp. (0274) 512102, 550541, 6491420
Fax. (0274) 550541 E-mail : jik@ugm.ac.id
website : jurnal.ugm.ac.id/jikfkt/

 

Indexed by :

 

Jurnal Ilmu Kehutanan/Journal Forest Science is under the license of Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 

Creative Commons License

View My Stats