Studi Mutu Kayu Jati di Hutan Rakyat Gunungkidul. VI. Kadar Zat Anorganik dan Keasaman

https://doi.org/10.22146/jik.24901

Ganis Lukmandaru(1*), Rudy Nur Hidayah(2),

(1) Departemen Teknologi Hasil Hutan, Fakultas Kehutanan, Universitas Gadjah Mada, Jl. Agro No.1, Bulaksumur, Sleman 55281
(2) Departemen Teknologi Hasil Hutan, Fakultas Kehutanan, Universitas Gadjah Mada, Jl. Agro No.1, Bulaksumur, Sleman 55281
(*) Corresponding Author

Abstract


Zat anorganik dan keasaman telah terbukti dalam mempengaruhi sifat-sifat kayu. Paper-paper sebelumnya dalam seri ini telah membahas sifat fisik dan kimia kayu jati dari hutan rakyat. Untuk itu, penelitian ini bertujuan untuk mengeksplorasi kadar zat anorganik dan keasaman kayu jati dari hutan rakyat Gunungkidul di 3 tempat tumbuh dengan zona ekologis berbeda (Panggang, Playen, Nglipar). Parameter yang diteliti adalah nilai pH, kadar abu (ASTM D-1102), kadar silika dan silikat (SNI 14-1031-1989), dan kadar unsur zat anorganik (Ca, Mg, K, Na, Fe, Mn, dan Cu) melalui Atomic Absorption Spectrophotometer. Kisaran kadar abu serta kadar silika dan silikat secara berurutan adalah 0,38-2,62%, dan 0,01-1,17%. Kisaran nilai kadar zat anorganik Ca, K, Mg, Na, dan Fe adalah 408–2919 ppm; 69-23705 ppm; 947-1653 ppm; 4-31 ppm; dan 0-326 ppm, secara berturutan sedangkan Mn dan Cu tidak terdeteksi di semua sampel. Selanjutnya, kisaran nilai pH yang diperoleh sebesar 5,23 – 6,98. Berdasarkan analisis variansi, kadar abu, silika-silikat, dan Na dipengaruhi oleh faktor tempat tumbuh dan arah radial pohon (gubal, teras luar, dan teras dalam). Kayu dari Playen (zona tengah/Ledok Wonosari) menunjukkan nilai yang cukup tinggi untuk kadar abu dan silika-silikat. Faktor arah radial pohon berpengaruh nyata pada unsur Ca, K, dan Mg melalui uji Kruskal-Wallis. Dari analisis korelasi Pearson, didapatkan hubungan kuat antara kadar abu dengan kadar silika-silkat (r = 0,77-0,88) serta kadar abu-Ca (r=-0,51) dan kadar abu-Mg (r=0,59) di bagian teras. Dalam tingkat unsur, hubungan terkuat diamati pada kadar Ca-Mg (r = -0,46). Perhatian khusus perlu diberikan pada kadar silika-silkat yang relatif tinggi di sampel yang diamati karena pengaruhnya terhadap penumpulan peralatan gergaji.


Study of Teakwood Quality from Community Forests in Gunungkidul. VI. Inorganic Material Contents and Acidity

Abstract

Inorganic materials and acidity in the wood has been proved to affect the wood properties. The previous paper in this series reported on the physical and chemical properties of teak wood from community forests. Therefore, this study aimed to explore the content of inorganic materials and acidity of teak wood grown in the 3 sites (Panggang, Playen, Nglipar) with different ecological attributes from community forests in Gunungkidul. The evaluated parameters were pH values, the contents of ash (ASTM D-1102), silica and silicates (SNI 14-1031-1989), and inorganic matters (Ca, Mg, K, Na, Fe, Mn, and Cu) by means of Atomic Absorption Spectrophotometer. The ranges of ash and silica-silicates content were 0.38-2.62%, and 0.01-1.17%, respectively. The ranges of inorganic element content for Ca, K, Mg, Na, and Fe were 408–2919 ppm; 69 – 23705 ppm; 947–1653 ppm; 4 – 31 ppm; and 0 – 326 ppm, respectively whereas Mn and Cu were not detected in any samples. Further, the obtained pH values range was 5.23–6.98. On the basis of analysis of variance, the contents of ash, silica-silicates, and Na were affected significantly by site and radial direction (sapwood, outer heartwood, and inner heartwood) factors. The woods from Playen (middle zone/Ledok Wonosari) had significantly high in ash and silica-silicate contents. By Kruskal-Wallis test, radial direction factor affected significantly the levels of Ca, K, and Mg. As defined by Pearson’s correlation analysis, it was found a strong correlation between the ash and silica-silicates contents (r=0.77-0.88), as well as between the ash-Ca content (r=-0.51) and the ash-Mg content (r=0.59) in the heartwood part. In the inorganic element levels, the strongest correlation was measured between Ca-Mg content (r=-0.46). Special attention should be given to the comparatively high amounts of the silica-silicates content in the observed samples as it would dull cutting tools considerably.



Keywords


ash content; inorganic naterials; pH value; silica; Tectona grandis;

Full Text:

PDF


References

  1. Abasolo WP, Yoshida M, Yamamoto H, Okuyama T. 2001. Silica in several rattan species. Holzforschung 55:595–600 
  2. Adamopoulus S, Voulgaridis E, Passialis C. 2005. Variation of certain chemical propeties within the stemwood of Black Locust (Robina pseudoacacia L). Holz als Roh- und Werkstoff 63: 327–333. 
  3. ASTM International. 2002. D-1102 Test methods for ash in wood. Annual Book of ASTM Standards 2002, Section 4: Construction. Hlm. 175. West Conshohocken, PA . 
  4. Dewan Standardisasi Nasional. 1989. SNI 14-1031-1989. Cara uji kadar abu, silika dan silikat dalam kayu dan pulp kayu. 
  5. Fengel D, Wegener G. 1995. Kayu: Kimia, ultrastruktur, reaksi-reaksi. Prawirohatmojo S, editor. Sastrohamidjojo H, penerjemah. Gadjah Mada University Press, Jogjakarta 
  6. Hachmi A, Moslemi AA. 1990. Effect of wood pH and buffering capacity on wood-cement compatibility. Holzforschung 44:425-430. 
  7. Kanazawa H, Nakagami T, Nobashi K, Yokota T. 1978. Studies on the gluing of the wood. Articles XI. The effects of teak wood extractives on the curing reaction and the hydrolysis rate of the urea resin. Mokuzai Gakkaishi 24:55-59. Kjaer ED, Kajornsrichon S, Lauridsen SB. 1998. Heartwood, calcium and silika content in five provenances of teak (Tectona grandis L). Silvae Genetica 48:1-3. 
  8. Kozlowski TT, Pallardy SG. 1997. Physiology of woody plants. Academic Press Inc., California 
  9. Kubo T, Ataka S. 1998. Blackening of sugi (Cryptomeria japonica D Don) heartwood in relation to metal content and moisture content. Journal of Wood Science 44:137–141. 
  10. Kuhn AJ, Schröder WH, Bauch J. 1997. On the distribution and transport of mineral elements in xylem, cambium, and .phloem of spruce (Picea abies[L] Karst). Holzforschung 51:487-496. 
  11. Lukmandaru G. 2010. Sifat kimia kayu jati (Tectona grandis) pada laju pertumbuhan berbeda. Jurnal Ilmu dan Teknologi Kayu Tropis 8(2):188-196. 
  12. Lukmandaru G. 2011. Komponen kimia kayu jati dengan pertumbuhan eksentris. Jurnal Ilmu Kehutanan 5(1):21-29 
  13. Lukmandaru G. 2012. Sifat kelarutan dalam air, keasaman dan kapasitas penyangga pada kayu jati. Hlm. 875-882 dalam Sulistyo J, Widyorini R, Lukmandaru G, Rofii MN, Prasetyo VE, editor. Prosiding Seminar Nasional XIV MAPEKI. Yogyakarta.
  14. Lukmandaru G. 2013. The natural termite resistance of teak wood grown in community forest. Jurnal Ilmu dan Teknologi Kayu Tropis 11(2):131-139. 
  15. Lukmandaru G. & Sayudha IGN. 2012. Komposisi ekstraktif pada kayu jati juvenil. Hlm. 361-366 dalam Sulistyo J, Widyorini R, Lukmandaru G, Rofii MN, Prasetyo VE, editor. Prosiding Seminar Nasional XIV MAPEKI. Yogyakarta. 
  16. Lukmandaru G, Ashitani T, Takahashi K. 2009. Color and chemical characterization of partially black-streaked heartwood in teak (Tectona grandis L.f). Journal of Forestry Research 20:377-380. 
  17. Lukmandaru G, Mohammad AR, Wargono P, Prasetyo VE. 2016. Studi mutu kayu jati di hutan rakyat Gunungkidul. V. Sifat kimia kayu. Jurnal Ilmu Kehutanan 10(2):108-118. 
  18. Marsoem SN. 2013. Studi mutu kayu jati di hutan rakyat Gunungkidul. I. Pengukuran laju pertumbuhan. Jurnal Ilmu Kehutanan 7(2):108-122. 
  19. Marsoem SN, Prasetyo VE, Sulistyo J, Sudaryono, Lukmandaru G. 2014. Studi mutu kayu jati di hutan rakyat Gunungkidul. III. Sifat fisika kayu. Jurnal Ilmu Kehutanan 8(2):76-89. 
  20. Marsoem SN, Prasetyo VE, Sulistyo J, Sudaryono, Lukmandaru G. 2015. Studi mutu kayu jati di hutan rakyat Gunungkidul. IV. Sifat mekanika kayu. Jurnal Ilmu Kehutanan 9(2):117-127. 
  21. Martawijaya A, Kartasudjana I, Kadir K, Amongprawira S. 1981. Atlas Kayu Indonesia Jilid I. Hlm. 42-47. Balai Penelitian Hasil Hutan. Badan Litbang Kehutanan. Bogor. 
  22. Mayer I, Koch G. 2007. Element content and pH value in American black cherry (Prunus serotina) with regard to colour changes during heartwood formation and hot water treatment. Wood Science and Technology 41:537–547. 
  23. McMillin WC. 1970. Mineral content of loblolly pine wood as related to specific gravity, growth rate, and distance from pith. Holzforschung 15:1-5. 
  24. Minato K, Morita T. 2005. Blackening of Diospyros genus xylem in connection with boron content. Journal of Wood Science 51:659 – 662. 
  25. Okuda N, Katayama Y, Nobuchi T, Ishimaru Y, Yamashita H, Aoki A. 1987. Trace elements in the stems of trees I. Radial distribution in sugi (Cryptomeria japonica D. Don). Mokuzai Gakkaishi 33:913- 920. 
  26. Okuda N, Katayama Y, Nobuchi T, Ishimaru Y, Yamashita H, Aoki A. 1993. Trace elements in the stems of trees VI. Comparisons of radial distributions among hardwood stems. Mokuzai Gakkaishi 39: 1119- 1127. 
  27. Ola-Adams AB. 1992. Effects of spacing on biomass distribution and nutrient content of Tectona grandis Linn. f. (teak) and Terminalia superba Engl. & Diels. (afara) in South-Western Nigeria. Forest Ecology and Management 58:299–319. 
  28. Passialis CE, Voulgaridis S, Adamopoulos S, Matsouka M. 2008. Extractives, acidity, buffering capacity, ash and inorganic elements of black locust wood and bark of different clones and origin. Holz als Roh- und Werkstoff 66: 395–400. 
  29. Polato R, Laming PB, Sierra-Alvarez R. 2003. Assessment some wood characteristics of teak of Brazilian origin. Hlm 257-265 dalam Bhat KM, Nair KKN, Bhat KV, Muralidharan EM, Sharma JK, editor. Proceeding of the International Conference on Quality Timber Products of Teak from Sustainable Forest Management. Kerala, India. 
  30. Rowell R, Pettersen R, Han JS, Rowell JS, Tshabalala MS. 2005. Cell wall chemistry. Hlm. 50 dalam Rowell R, editor. Handbook of wood chemistry and wood composites. CRC Press. Boca Raton-London-New York-Washington D.C. 
  31. Shmulsky R, Jones PD. 2011. Forest products and wood science: An introduction, Sixth edition. Hlm. 45. John Wiley & Sons, Inc. West Sussex, UK. 
  32. Takahashi K. 1996. Relationships between the blacking phenomenon and norlignans of sugi (Cryptomeria japonica D Don) heartwood I. A case of partially black heartwood. Mokuzai Gakkaishi 42:998-1005. 
  33. Tsuchiya Y, Shimogaki H, Abe H, Kagawa A. 2010. Inorganic elements in typical Japanese trees for woody biomass fuel. Journal of Wood Science 56:53-63. 
  34. Windeisen E, Klassen A, Wegener G. 2003. On the chemical characterization of plantation teakwood (Tectona grandis L) from Panama. Holz als Roh- und Werkstoff 61:416–418. 
  35. Xing C, Zhang SY, Deng J. 2004. Effect of wood acidity and catalyst on UF resin gel time. Holzforschung 58:408–412. 
  36. Yunanta RRK, Lukmandaru G, Fernandes A. 2014. Sifat kimia dari kayu Shorea retusa, Shorea macroptera, dan Shorea macrophylla. Jurnal Penelitian Dipterokarpa 8:15-25. 
  37. Zicherman BJ, Thomas RJ. 1972. Analysis of loblolly pine ash materials. Holzforschung 4:1-4



DOI: https://doi.org/10.22146/jik.24901

Article Metrics

Abstract views : 267 | views : 166

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Jurnal Ilmu Kehutanan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Redaksi Jurnal Ilmu Kehutanan
Fakultas Kehutanan Universitas Gadjah Mada
Jl. Agro No 1, Bulaksumur, Sleman 55281
Telp. (0274) 512102, 550541, 6491420
Fax. (0274) 550541 E-mail : jik@ugm.ac.id
website : jurnal.ugm.ac.id/jikfkt/

 

Indexed by :

 

Jurnal Ilmu Kehutanan/Journal Forest Science is under the license of Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 

Creative Commons License

View My Stats