Faktor-faktor yang mempengaruhi kemampuan kognitif pada lansia obesitas di Indonesia

https://doi.org/10.22146/ijcn.25765

Yoseph Leonardo Samodra(1*), Neni Trilusiana Rahmawati(2), Sumarni Sumarni(3)

(1) Fakultas Kedokteran Universitas Kristen Duta Wacana
(2) Departemen Anatomi, Embriologi, dan Antropologi, Fakultas Kedokteran, Kesehatan Masyarakat, dan Keperawatan Universitas Gadjah Mada
(3) Fakultas Kedokteran, Kesehatan Masyarakat, dan Keperawatan Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Background: Elderly (>60 years old) population is growing in Indonesia. It is important to prevent degradation of cognitive capacity by risk factor identification and treatment.

Objective: To identify the relationship between anthropometric status and cognitive capacity on elderly population.

Method: This is an analysis of The Fifth Wave of the Indonesia Family Life Survey (IFLS5) data with cross-sectional design. Anthropometric status is consisted of: body weight, body height, body mass index (BMI), knee height, upper arm length, waist circumference, hip circumference, and waist-hip ratio (WHR). Cognitive capacity is measured by modified telephone survey of cognitive status (TICS). Chi-Square and Mann-Whitney test are used for bivariate analysis, logistic regression is used for multivariate analysis.

Results: Variables with significant relationship to cognitive capacity are body weight (p=0.0002), body height (p=0.0001), knee height (p=0.0387), upper arm length (p=0.0114), age (p=0.011), sex (p=0.014), and history of hypercholesterolemia (p=0.003). Logistic regression shows that body height, age, and history of hypercholesterolemia are simultaneously affecting cognitive capacity.

Conclusion: There is significant relationship between body height, body weight, upper arm length, knee height, and cognitive capacity on elderly population with obesity.


Keywords


anthropometry; cognitive; elderly; obesity

Full Text:

PDF


References

  1. Cakrabawa D, Hakim M, Hasanah L, editors. Statistik penduduk 1971-2015. Jakarta: Pusat Data dan Sistem Informasi Pertanian, Sekretariat Jenderal, Kementerian Pertanian Republik Indonesia; 2014.
  2. Badan Pusat Statistik. Proyeksi penduduk Indonesia 2010-2035. Jakarta: Badan Pusat Statistik; 2013.
  3. Cui GH, Guo HD, Xu RF, Jiang GX, Chen SD, Cheng Q. The association of weight status with cognitive impairment in the elderly population of a Shanghai suburb. Asia Pac J Clin Nutr. 2013;22(1):74-82.
  4. Suriastini N, Turana Y, Witoelar F, Supraptilah B, Wicaksono T, Dwi E. Angka prevalensi demensia: perlu perhatian kita semua. Policy Brief. Yogyakarta: SurveyMETER; 2016.
  5. Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M. World alzheimer report 2016: improving healthcare for people living with dementia. London: Alzheimer’s Disease International; 2016.
  6. Balitbang Kemenkes RI. Riset kesehatan dasar: Riskesdas 2013 Jakarta: Kemenkes RI; 2013.
  7. Strauss J, Witoelar F, Sikoki B. The Fifth Wave of the Indonesia Family Life Survey (IFLS5): Overview and Field Report. Santa Monica: RAND Corporation; 2016.
  8. Sánchez-García S, García-Peña C, Duque-López M, Juárez-Cedillo T, Cortés-Núñez A, Reyes-Beaman S. Anthropometric measures and nutritional status in a healthy elderly population. BMC Public Health. 2007;7(2):1-9.
  9. Osterlund L. Wisdom in the counseling relationship. Jesuit Higher Edu. 2014; 3(2): p. 74-84.
  10. Gavriilidou N, Pihlsgård M, Elmståhl S. Anthropometric reference data for elderly Swedes and its disease-related pattern. Eur J Clin Nutr. 2015;69(9):1066-75.
  11. Quan S, Jeong J, Kim D. The relationship between height and cognitive function among community-dwelling elderly: Hallym Aging Study. Epidemiol Health 2013;35:e2013002.
  12. Won H, Manaf Z, Ludin A, Omar M, Razali R, Shahar S. The cut-off values of anthropometric variables for predicting mild cognitive impairment in Malaysian older adults: a large population based cross-sectional study. Clin Interv Aging. 2017;12:275-82.
  13. Castro-Costa É, Peixoto S, Firmo J, Uchoa E, Lima-Costa M. The association between nutritional status and cognitive impairment in Brazilian community-dwelling older adults assessed using a range of anthropometric measures – the Bambui Study. Dement Neuropsychol. 2013;7(4):403-9.
  14. Choi SI, Chung D, Lim JS, Lee MY, Shin JY, Huh JH, et al. Relationship between regional body fat distribution and diabetes mellitus: 2008 to 2010 Korean National Health and Nutrition Examination Surveys. Diabetes Metab J. 2017;41(1):51-9.
  15. Huang T, Carlson M, Fitzpatrick A, Kuller L, Fried L, Zandi P. Knee height and arm span: a reflection of early life environment and risk of dementia. Neurology. 2008;70:1818-26.
  16. Wadsworth M, Hardy R, Paul A, Marshall S, Cole T. Leg and trunk length at 43 years in relation to childhood health, diet and family circumstances; evidence from the 1946 national birth cohort. Int J Epidemiol. 2002;31:383-90.
  17. Huang W, Lei X, Ridder G, Strauss J, Zhao Y. Health, height, height shrinkage, and SES at older ages: evidence from China. Am Econ J Appl Econ. 2013;5(2):86-121.
  18. James B, Schneider J. Increasing incidence of dementia in the oldest old: evidence and implications. Alzheimer’s Research & Therapy 2010;2:9.
  19. Brito WA, Mendes L, Sales MM, Neto JB, Brito CJ, Grigoletto MEdS, et al. Cognitive profile associated with functional and anthropometric aspects in elderly. Rev Andal Med Deporte. 2016;9(4):154-9.
  20. Badan Pusat Statistik. Statistik penduduk lanjut usia 2014. Jakarta: Badan Pusat Statistik; 2015.
  21. Beydoun M, Beydoun H, Wang Y. Obesity and central obesity as risk factors for incident dementia and its sub-types: a systematic review and meta-analysis. Obes Rev. 2008;9(3):204-18.
  22. Novak V. Cognition and hemodynamics. Curr Cardiovasc Risk Rep. 2012;6:380-96.
  23. Friedman JI, Wallenstein S, Moshier E, Parrella M, White L, Bowler S, et al. The effects of hypertension and body mass index on cognition in schizophrenia. Am J Psychiatry. 2010;167:1232-9.
  24. Roberts R, Geda Y, Knopman D, Teresa J, Christianson B, Pankratz V, et al. Duration and severity of diabetes are associated with mild cognitive impairment. Arch Neurol. 2008;65(8):1066-73.
  25. Hughes T, Ganguli M. Modifiable midlife risk factors for late-life cognitive impairment and dementia. Curr Psychiatry Rev. 2009;5(2):73-92.
  26. Wreksoatmodjo BR. Beberapa kondisi fisik dan penyakit yang merupakan faktor risiko gangguan fungsi kognitif. CDK. 2014;41(1):25-32.
  27. Susanto Y, Alfian R. Perbaikan perilaku dan tekanan darah pasien hipertensi di RSUD Dr. H. Moch. Ansari Saleh Banjarmasin setelah pemberian leaflet edukasi hipertensi dan terapinya. Jurnal Ilmiah Manuntung. 2015;1(2):140-4.
  28. Perdana A, Ichsan B, Rosyidah D. Hubungan tingkat pengetahuan tentang penyakit DM dengan pengendalian kadar glukosa darah pada pasien DM Tipe II di RSU PKU Muhammadiyah Surakarta. Biomedika. 2013;5(2):17-21.
  29. Aurora R, Sinambela A, Noviyanti C. Peran konseling berkelanjutan pada penanganan pasien hiperkolesterolemia. J Indon Med Assoc. 2012;62(5):194-201.



DOI: https://doi.org/10.22146/ijcn.25765

Article Metrics

Abstract views : 1143 | views : 1259

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Jurnal Gizi Klinik Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Gizi Klinik Indonesia (JGKI) Indexed by:
 
 Crossref   Google Scholar Indonesian Scientific Journal Database (ISJD) Indonesia OneSearch (IOS)  CORE   

  Creative Commons License

JGKI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

free
web stats View My Stats