Numerical Calculation of Energy Eigen-values of the Hydrogen Negative Ion in the 2p^2 Configuration by Using the Variational Method
Yosef Robertus Utomo(1*), Guntur Maruto(2), Agung Bambang Setio Utomo(3), Pekik Nurwantoro(4), Sholihun Sholihun(5)
(1) Universitas Gadjah Mada
(2) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas GadjahMada, Sekip Utara BLS 21 Yogyakarta 55281
(3) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas GadjahMada, Sekip Utara BLS 21 Yogyakarta 55281
(4) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas GadjahMada, Sekip Utara BLS 21 Yogyakarta 55281
(5) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas GadjahMada, Sekip Utara BLS 21 Yogyakarta 55281
(*) Corresponding Author
Abstract
Calculation of energy eigen value of hydrogen negative ion (H − ) in 2p^2 configuration using the method of variation functions has been done. A work on H − can lead to calculations of electric multipole moments of a hydrogen molecule. The trial function is a linear combination of 8 expansion terms each of which is related to the Chandrasekhar’s basis. This work produces a series of 7 energy eigen values which converges to a value of −0.2468 whereas the value of this convergence is expected to be −0.2523. This deviation from the expected value is mainly due to the elimination of interelectronic distance (u) coordinate. The values of the exponent parameters used in this work contribute also to this deviation. This variational method will be applied to the construction of some energy eigen functions of Hv2 .
Keywords
Full Text:
UntitledReferences
- Margenau H, Murphy GM. The mathematics of chemistry and physics. van Nostrand, Princeton, NJ. 1956;p. 438–442.
- Rau ARP. The negative ion of hydrogen. Journal of Astrophysics and Astronomy. 1996;17(3-4):113–145.
- Utomo Y. Application of linear variation method ontwo-electron system. Universitas Gadjah Mada; 2015.
- Fischer CF. Hartree–Fock method for atoms. A numerical approach. 1976;.
- Hettema H. Quantum chemistry: classic scientific papers. vol. 8. World Scientific; 2000.
- Bylicki M, Bednarz E. Nonrelativistic energy of the hydrogen negative ion in the 2 p 2 3 P e bound state. Physical Review A. 2003;67(2):22503.
- Fontenelle MT, Gallas JAC. On the use of Chandrasekhar’s basis for helium and its isoelectronic series. The Journal of chemical physics. 1992;97(7):4986–4988.
- Ruiz MB. Hylleraas method for many-electron atoms. I. The Hamiltonian. International journal of quantum chemistry. 2005;101(3):246–260.
- Sims JS, Hagstrom SA. High precision variational calculations for the Born-Oppenheimer energies of the ground state of the hydrogen molecule. The Journal of chemical physics. 2006;124(9):94101.
- Albert VV, Guevara NL, Sabin JR, Harris FE. Few-parameter exponentially correlated wavefunctions for the ground state of lithium. International Journal of Quantum Chemistry. 2009;109(15):3791–3797.
DOI: https://doi.org/10.22146/jfi.v24i1.53331
Article Metrics
Abstract views : 1217 | views : 1379Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Yosef Robertus Utomo, Guntur Maruto, Agung Bambang Setio Utomo, Pekik Nurwantoro, Sholihun Sholihun
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.