Significance Of Differences From Sumatera, Kalimantan, and Sulawesi Coal Based On Cluster Analysis And Statistics

Rizki Satria Rachman(1*), Rahmat Hidayat(2), Soleh Basuki Rahmat(3), Sigit Arso Wibisono(4)
(1) Center for Mineral, Coal and Geothermal Resources
(2) Center for Mineral, Coal and Geothermal Resources
(3) Center for Mineral, Coal and Geothermal Resources
(4) Center for Mineral, Coal and Geothermal Resources
(*) Corresponding Author
Abstract
Indonesia has a complex geological structure with coal potential dominated by 3 main islands, Sumatra (SMS), Kalimantan (KS), and Sulawesi (SLS). However, the characteristics of coal on these three islands are not explained further. Therefore, this research is intended to see the significant differences in coal on Sumatra, Kalimantan and Sulawesi in terms of their characteristics. The research methods carried out include literature study, field activities, laboratory analysis including proximate analysis (total moisture, moisture, volatile matter, fixed carbon), total sulfur, calories, specific gravity, HGI, ultimate analysis (C, H, N, O, S), and coal ash analysis, as well as data processing using cluster analysis and principle component analysis (PCA). Result, 55 coal samples were obtained on these three islands which were divided into 9 main clusters with 50% similarity. Kalimantan Island has coal with an increase in TiO2, Al2O3, Na2O oxides with carbon and nitrogen elements. Sumatra Island has coal with increased TM, M, MnO, CaO, MgO, Fe2O3, and SO3 and a slight influence of HGI, TS. Meanwhile, Sulawesi Island has coal with complex parameters and an increase in calorific value. It is interpreted that the differences in coal characteristics are influenced by the different geological settings of these three islands in the past until resen.
Keywords
Full Text:
PDFReferences
Amijaya, H. & Littke, R. (2005). Microfacies and de- positional environment of Tertiary Tanjung Enim low-rank coal, South Sumatra Basin, Indonesia. International Journal of Coal Geology, 61, 197 – 221.10.1016/j.coal.2004.07.004.
Arif, I. (2014). Batubara Indonesia. Jakarta: Grame- dia Pustaka Utama.
Atteridge, A., Aung, M. T., & Nugroho, A. (2018). Contemporary coal dynamics in Indonesia. Stock- holm: Stockholm Environment Institute.
British Petroleum. (2021). Statistical Review of World Energy. British Petroleum.
Charlton, T. R. (2000). Tertiary evolution of the Eastern Indonesia Collision Complex. Journal of Asian Earth Sciences, 18, 603-631. 10.1016/S1367-9120(99)00049-8.
Friederich, M. C. & Leeuwen, T. V. (2017). Ex- ploration, discovery, and production in In- donesia: The interplay of the legal framework, coal geology, and exploration strategy. Inter- national Journal of Coal Geology, 178, 56-73. 10.1016/j.coal.2017.04.007.
Friederich, M. C., Moore, T. A. & Flores, R. M. (2016). A regional review and new insights into SE Asia Cenozoic coal-bearing sediments: Why does In- donesia have such extensive coal deposits? In- ternational Journal of Coal Geology, 166, 2-35. 10.1016/j.coal.2016.06.013.
Fikri, H. N., Sachsenhofer, R. F., Bechtel, A., & Gross, D. (2022). Coal deposition in the Barito Basin (Southeast Borneo): The Eocene Tanjung Forma- tion compared to the Miocene Warukin Forma- tion. International Journal of Coal Geology, 263, 1-22. 10.1016/j.coal.2022.104117.
Fiqih, F. M., Abdurrokhim & Muljana, B. (2014). Paleogene Deposits Distribution of the Kam- par Block, Central Sumatra Basin. Jurnal Ge- ologi dan Sumberdaya Mineral, 25(1), 9-18. 10.33332/jgsm.geologi.v25i1.809.
Hagelskamp, H. H. B., Eriksson, P. G. & Snyman, C. P. (1988). The Effect of Depositional Environment on Coal Distribution and Quality Parameters in a Portion of the Highveld Coalfield, South Africa. International Journal o[ Coal Geology, 10, 51-77. 10.1016/0166-5162(88)90005-5.
Hall, R. (2002). Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pa- cific: Computer-based Reconstructions, Model, and Animations. Journal of Asian Earth Sciences, 20, 353-431. 10.1016/S1367-9120(01)00069-4.
Hall, R. (2012). Late Jurassic–Cenozoic recon- structions of the Indonesian region and the Indian Ocean. Tectonophysics, 570-571, 1-41. 10.1016/j.tecto.2012.04.021.
Heryanto, R. (2006). Perbandingan karakteristik lingkungan pengendapan, batuan sumber, dan diagenesis Formasi Lakat di lereng timur laut dengan Formasi Talangakar di tenggara Pegu- nungan Tigapuluh, Jambi. Jurnal Geologi Indone- sia, 1(4), 173-184. 10.17014/ijog.1.4.173-184.
International Energy Agency (IEA). (2023). Coal Market Update July 2023. International Energy Agency (IEA).
James, G., Witten, D., Hastie, T. & Tibshirani, R. (2013). An introduction to statistical learning. New York: Springer.
Jolliffe, I. T., & Cadima, J. (2016). Principal compo- nent analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 1-16. 10.1098/rsta.2015.0202.
Kandemir, S. Y. (2016). Assessment of coal de- posit using multivariate statistical analysis tech- niques. Energy Sources, Part A: Recovery, Utiliza- tion, and Environmental Effects, 38(7), 1002–1006. 10.1080/15567036.2010.540635.
Kaufman, L. & Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster analy- sis. s.l.:John Wiley & Sons.
Kim, H.-M., & Yoo, S.-H. (2016). Coal consump- tion and economic growth in Indonesia. Energy Sources, Part B: Economics, Planning, and Policy, 11(6), 547–552. 10.1080/15567249.2012.690503.
Lee, R. C. (1981). Clustering Analysis and Its Appli- cations (8 ed.). Boston: Springer US.
Metcalfe, I. (2011). Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research, 19, 3–21. 10.1016/j.gr.2010.02.016.
Metcalfe, I. (2013). Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolu- tion of eastern Tethys. Journal of Asian Earth Sci- ences, 66, 1-33. 10.1016/j.jseaes.2012.12.020.
Miller, B. G. & Tillman, D. A (2008). Coal charac- teristics: Combustion engineering issues for solid fuel systems In Combustion engineering issues for solid fuel systems. s.l.: Academic Press.
Murtagh, F. & Contreras, P. (2012). Algorithms for hierarchical clustering: an overview. Wiley Inter- disciplinary Reviews: Data Mining and Knowl- edge Discovery, 2(1), 86–97. 10.1002/widm.53.
Pusat Sumber Daya Mineral Batubara dan Panas Bumi. (2023). Sumber Daya dan Cadangan Batubara Indonesia Status Semester 1 Tahun 2023. Bandung: Pusat Sumber Daya Mineral Batubara dan Panas Bumi.
Putra, S. E., Sriyanti, & Solihin. (2018). Analisis Komposisi Abu Batubara terhadap Kemungkinan Pembentukan Slagging dan Fouling Index pada PLTU. Prosiding Teknik Pertambangan, 4(1), 251-259. 10.29313/pertambangan.v0i0.9712.
Rasheed, M. A., Rao, P. L., Boruah, A., Hasan, S. Z., Patel, A., Velani, V., & Patel, K. (2015). Geochemical Characterization of Coals Using Proximate and Ultimate Analysis of Tadkesh- war Coals, Gujarat. Geosciences, 5(4), 113-119. 10.5923/j.geo.20150504.01.
Sardi, B., Ripky, M., Marhum, F. A., Nompo, S., & Arif, M. (2023). Analisis proksimat,ultimat,dan kadar sulfur dalam penentuan kualitas batubara pada formasi bobong Pulau Taliabu – Maluku. Sultra Journal of Mechanical Engineering (SJME), 2(1), 45-53. 10.54297/sjme.v2i1.443.
Stahl, D., & Sallis, H. (2012). Model-based cluster analysis. Wiley Interdisciplinary Re- views: Computational Statistics, 4(4), 341-358. 10.1002/wics.1204.
Stanford, C. E. (2013). Coal Resources, Production, and Use in Indonesia. Dalam D. Osborne, &D. Osborne (Penyunt.), The Coal Handbook: To- wards Cleaner Production (hal. 200-219). New South Wales: Woodhead Publishing Limited.
Sukamto, R. (1982). Geologi lembar Pangkajene dan Watampone bagian barat, Sulawesi. Bandung: Pusat Penelitian dan Pengembangan Geologi.
Sun, R., Liu, G., Zheng, L. & Chou, C.-L. (2010). Characteristics of coal quality and their relation- ship with the coal-forming environment: A case study from the Zhuji exploration area, Huainan coalfield, Anhui, China. Energy, 35, 423–435. 10.1016/j.energy.2009.10.009.
Tharwat, A. (2016). Principal component analysis tutorial. International Journal of Applied Pattern Recognition, 3(3), 197-240.10.1504/IJAPR.2016.079733.
Thomas, L. P. (2013). Coal Resources and Reserves. Dalam D. Osborne (Penyunt.), The Coal Hand- book: Towards Cleaner Production (hal. 80-106). Oxford: Woodhead Publishing Limited.
Wilson, M. E., & Moss, S. J. (1999). Cenozoic palaeo- geographic evolution of Sulawesi and Borneo. Pa- leogeography, Palaeoclimatology, Palaeoecology, 145, 303–337. 10.1016/S0031-0182(98)00127-8.
Zamroni, A., Sugarbo, O., Prastowo, R., Widi- atmoko, F. R., Safii, Y., & Wijaya, R. A. (2020). The Relationship between Indonesian Coal Qualities and Their Geologic Histories. International Con- ference on Earth Science, Mineral, and Energy, 2, 1-7. 10.1063/5.0006836

Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Rizki Satria Rachman, Rahmat Hidayat, Soleh Basuki Rahmat, Sigit Arso Wibisono

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Applied Geology Indexed by:

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.