Emplacement Temperature of the Overbank and Dilute-Detached Pyroclastic Density Currents of Merapi 5 November 2010 Events using Reflectance Analysis of Associated Charcoal


Haryo Edi Wibowo(1*), Anggun Purnama Edra(2), Agung Harijoko(3), Ferian Anggara(4)

(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(3) Universitas Gadjah Mada
(4) Universitas Gadjah Mada
(*) Corresponding Author


Merapi eruption in 2010 produced 17 km high column of ash and southward pyroclastic density current (PDC). Based on the deposits characteristics and distributions, the PDC is divided into channel and overbank facies (pyroclastic flow), and associated diluted PDC (pyroclastic surge). The hot overbank PDCs and the associated dilute-detached PDCs are the main cause of high casualty (367 fatalities) in medial-distal area (5–16 km), especially near main valley of Kali Gendol. We reported the emplacement temperature of these two deposits using reflectance analysis of charcoal. We used both entombed charcoals in the overbank PDC and charcoals in singed house nearby. Samples were collected on 6–13 km distance southward from summit. Charcoalification temperatures of the entombed charcoals represent deposition temperature of the overbank PDCs, whereas those of charcoals in the singed house resembles temperature of the associated dilute-detached PDCs. Results show mean random reflectance (Ro%) values of entombed charcoal mainly range 1.1–1.9 correspond to temperature range 328–444 °C, whereas charcoal in singed house range 0.61–1.12 with estimated temperature range 304–358 °C. The new temperature data of the dilute-detached PDCs in the medial-distal area is crucial for assessing impact scenarios for exposed populations as it affects them lethally and destructively


Emplacement temperature - PDCs - Merapi - Reflectance analysis - Charcoal.

Full Text:



Ascough, P.L., Bird, M.I., Scott, A.C., Collinson, M.E., Cohen-Ofri, I., Snape, C.E., Le Manquais, K. (2010) Charcoal reflectance measurements: implications for structural characterization and assessment of diagenetic alteration. Journal Archaeological Science 37: 1590–1599. DOI: https://doi.org/10.1016/j.jas.2010.01.020.

ASTM D2799-05a (2005) Standard Test Method for Microscopical Determination of the Maceral Composition of Coal.

Baxter, P.J., Jenkins, S., Rosadi, S., Komorowski, J.-C., Dunn, K., Purser, D., Voight, B., Shelley, I. (2017). Human survival in volcanic eruptions: thermal injuries in pyroclastic surges, their causes, prognosis and emergency management. Burns DOI: https://doi.org/10.1016/j.burns.2017.01.025.

Bronto, S., Sayudi, D. S., Muzani, M., Putra, R. (2011) Potential Hazard of Merapi in The Near Future.

International Workshop Lesson Learned from the 2010 Merapi Eruption, November 01-02 2011. Yogyakarta.

Caricchi, C., Vona, A., Corrado, S., Giordano, G., Romano, C. (2014) 79AD Vesuvius PDC deposits’ temperatures inferred from optical analysis on woods charred in-situ in the Villa dei Papiri at Herculaneum (Italy). Journal of Volcanology and Geothermal Research 289: 14–25.

Charbonnier, S.J., Gertisser, R. (2008) Field observations and surface characteristics of pristine blockand- ash flow deposits from the 2006 eruption of Merapi volcano, Java, Indonesia. Journal of Volcanology and Geothermal Research 177: 971–982.

Charbonnier, S.J., Germa, A.M., Connor, C.B., Gertisser, R., Preece, K., Komorowski, J.-C., Lavigne,

F., Dixon, T.H., Connor, L.J. (2013) Evaluation of the impact of the 2010 pyroclastic density currents at Merapi volcano from high-resolution satellite imagery, field investigations and numerical simulations.

Journal of Volcanology and Geothermal Research 261: 295–315.

Cronin, S.J., Lube, G., Dayudi, D.S., Sumarti, S., Subrandiyo, S., Surono (2013) Insights into the October– November 2010 Gunung Merapi eruption (Central Java, Indonesia) from the stratigraphy,

volume and characteristics of its pyroclastic deposits. Journal of Volcanology and Geothermal Research 261: 244–259.

Harijoko, A., Mariska, N.A.S., dan Anggara, F. (2018) Estimated Emplacement Temperatures for a Pyroclastic Deposits from the Sundoro Volcano, Indonesia, using Charcoal Reflectance Analyses.

Indonesian Journal on Geoscience 5(1): 1-11.

Hudspith, V.A., Scott, A.C., Wilson, C.J.N., Collinson,M.E. (2010) Charring of woods by volcanic processes: an example from the Taupo ignimbrite, New Zealand. Palaeogeography Palaeoclimatology

Palaeoecology 291: 40–51.

Jenkins, S., Komorowski, J.-C., Baxter, P.J., Spence, R., Picquot, A., Lavigne, F., dan Surono (2013) The

Merapi 2010 Eruption : An Interdisciplinary Impact Assessment Methodology for Studying Pyroclastic Density Current Dynamic. Journal of Volcanology and Geothermal Research 261: 316-329.

Jones, T.P., Scott, A.C., dan Cope, M. (1991) Reflectance measurements and the temperature of formation of modern charcoals and implications for studies of fusain. Bulletin de la Societe Geologique

de France 162: 193–200.

Jousset, P., Pallister, J., dan Surono. (2013) The 2010 Eruption of Merapi Volcano. Journal of Volcanology and Geothermal Research 261: 1-6.

Komorek, J. dan Morga, R. (2002) Relationship between the maximum and the random reflectance

of vitrinite for coal from the Upper Silesian Coal Basin. Fuel 81: 969-971.

Komorowski, J.-C., Jenkins, S., Baxter, P.J., Picquout, A., Lavigne, F., Charbonnier, S., Gertisser, R.,

Preece, K., Cholik, N., Budi-Santoso, A., Surono (2013) Paroxysmal dome explosion during the

Merapi 2010 eruption: processes and facies relationships of associated high-energy pyroclastic

density currents. Journal of Volcanology and Geothermal Research 261: 260–294.

Pallister, J.S., Schneider, D.J., Griswold, J.P., Keeler, R.H., Burton, W.C., Noyles, C., Newhall, C.G.,

Ratdomopurbo, A. (2013). Merapi 2010 eruption— chronology and extrusion rates monitored

with satellite radar and used in eruption forecasting. Journal of Volcanology and Geothermal Research

: 144–152.

Pensa, A., Porreca, M., Corrado, S., Giordano, G., Cas, R. (2015) Calibrating the pTRM and charcoal

reflectance (R0%) methods to determine the emplacement temperature of ignimbrites: Fogo A sequence,

São Miguel, Azores, Portugal, as a case study. Bulletin of Volcanology 77 (18).

Pensa, A., Capra, L., Giordano, G., Corrado, S. (2018) Emplacement temperature estimation of the 2015

dome collapse of Volcán de Colima as key proxy for flow dynamics of confined and unconfined pyroclastic density currents. Journal of Volcanology and Geothermal Research 357: 321–338.

Preece, K., Gertisser, R., Barclay, J., Charbonnier, S.J., Komorowski, J.-C., Herd, R.A. (2016) Transitions

between explosive and effusive phases during the cataclysmic 2010 eruption of Merapi volcano, Java, Indonesia. Bulletin Volcanology 78 (54).

Sawada, Y., Sampei, Y., Hyodo, M., Yagami, T., Fukue, M. (2000) Estimation of emplacement temperature of pyroclastic flows using H/C ratios of carbonized wood. Journal of Volcanology and

Geothermal Research 104: 1–20.

Scott, A.C. (2000) The Pre-Quaternary history of fire. Journal of Palaeogeography, Palaeoclimatology,

Palaeoecology, 164 (1-4): 281-329. DOI: https://doi.org/10.1016/S0031-0182(00)00192-9.

Scott, A.C. and Glasspool, I.J. (2005) Charcoal reflectance as a proxy for the emplacement temperature

of pyroclastic flow deposits. Geology 33: 589–592.

Scott, A.C., Sparks, R.S.J., Bull, I.D., Knicker, H., Evershed, R.P. (2008) Temperature proxy data and

their significance for the understanding of pyroclastic density currents. Geology 36: 143–146.

Scott, A.C. (2010) Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography Palaeoclimatology Palaeoecology 291: 11–39.

Surono, Jousset, P., Pallister, J., Boichu, M., Buongiorno, M.F., Budisantoso, A., Costa, F., Andreastuti,

S., Prata, F., Schneider, D., Lieven, C., Humaida, H., Sumarti, S., Bignami, C., Griswold, J., Carn, S., Oppenheimer, C., Lavigne, F. (2012). he 2010 explosive eruption of Java’s Merapi volcano— a “100-year” event. Journal of Volcanology and Geothermal Research 241: 121–135.

Trolese, M., Giordano, G., Komorowski, J.-C., Jenkins, S., Baxter, P. J., Cholik, N., Raditya, P. & Corrado, S. (2018) Very rapid cooling of the energetic pyroclastic density currents associated with the 5 November 2010 Merapi eruption (Indonesia). Journal of Volcanology and Geothermal Research

: 1–12.

Uehara, D., Cas, R.A.F., Folkes, C., Takarada, S., Oda, H., Porreca, M. (2015) Using thermal remanent

magnetisation (TRM) to distinguish block and ash flow and debris flow deposits, and to estimate their emplacement temperature: 1991–1995 lava dome eruption at Mt. Unzen volcano, Japan. Journal of Volcanology and Geothermal Research 303: 92–111. DOI: https://doi.org/10.1016/j.jvolgeores.2015.07.019.

Voight, B., Davis, M.J. (2000) Emplacement temperatures of the November 22, 1994 nuée ardente

deposits, Merapi Volcano, Java. Journal of Volcanology and Geothermal Research 100: 371–377.


Walker, G.P.L. (1971) Grain-size characteristics of pyroclastic deposits. Journal of Geology 79: 696–714.

DOI: https://doi.org/10.22146/jag.42445

Article Metrics

Abstract views : 264 | views : 110


  • There are currently no refbacks.

Copyright (c) 2019 Haryo Edi Wibowo, Anggun Purnama Edra, Agung Harijoko, Ferian Anggara

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Journal of Applied Geology Indexed by: