Temperature and Climate Dynamics in National Capital Region of India

Areesha Areesha(1), Pankaj Chauhan(2*), Rizwan Ahmed(3), Sanjukta Bhaduri(4), Dharmaveer Singh(5), Md Kaikubad Ali(6)
(1) Interdisciplinary Department of Remote Sensing and GIS Applications, AMU, Aligarh-202002, India
(2) Department of Glaciology and Environmental Geology, Wadia Institute of Himalayan Geology, Dehradun-248001, India and Academy of Scientifi and Innovative Research (AcSIR), Ghaziabad-201002, India
(3) Interdisciplinary Department of Remote Sensing and GIS Applications, AMU, Aligarh-202002, India
(4) Academy of Scientifi and Innovative Research (AcSIR), Ghaziabad-201002, India
(5) Department of Geo-informatics, Symbiosis International (Deemed University), Pune-412115, India
(6) 
(*) Corresponding Author
Abstract
Keywords
References
2018 — Global Warming of 1.5 oC. (n.d.). Retrieved from https://www.ipcc.ch/sr15/2018/
Atzberger, C. (2013). Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sensing, 5(2), 949–981. doi:10.3390/rs5020949
CERES – Clouds and the Earth’s Radiant Energy System. (n.d.). Retrieved 2 May 2025, from https://ceres.larc.nasa.gov/
Chauhan, P., Darshan, M., Kalachand, S., Ram L., R., Sudhir Kumar, S., & and Singh, D. (2022). Assessing the vulnerability of watersheds to environmental degradation in the lesser Himalayan region using satellite data and a series of models. Geocarto International, 37(27), 18372–18399. doi:10.1080/10106049.2022.2142958
Chauhan, P., Singh, N., Chauniyal, D. D., Ahluwalia, R. S., & Singhal, M. (2017). Differential behaviour of a Lesser Himalayan watershed in extreme rainfall regimes. Journal of Earth System Science, 126(2), 22. doi:10.1007/s12040-017-0796-0
Gao, Y., Skutsch, M., Paneque-Gálvez, J., & Ghilardi, A. (2020). Remote sensing of forest degradation: a review. Environmental Research Letters, 15(10), 103001. doi:10.1088/1748-9326/abaad7
Gašparović, M., & and Singh, S. K. (2023). Urban surface water bodies mapping using the automatic k-means based approach and sentinel-2 imagery. Geocarto International, 38(1), 2148757. doi:10.1080/10106049.2022.2148757
Hsu, A., Sheriff, G., Chakraborty, T., & Manya, D. (2021). Disproportionate exposure to urban heat island intensity across major US cities. Nature Communications, 12(1), 2721. doi:10.1038/s41467-021-22799-5
IMD | Environmental Monitoring Services. (n.d.). Retrieved 2 May 2025, from https://mausam.imd.gov.in/imd_latest/contents/environmental-monitoring-services.php
Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021 – The Physical Science Basis. Climate Change 2021 – The Physical Science Basis. doi:10.1017/9781009157896
Jabbar, M., & Yusoff, M. (2022). Assessing The Spatiotemporal Urban Green Cover Changes and Their Impact on Land Surface Temperature and Urban Heat Island in Lahore (Pakistan). GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY, 15, 130–140. doi:10.24057/2071-9388-2021-005
Jeyaseelan, A. (2004). Droughts & Floods Assessment and Monitoring using Remote sensing and GIS. In Satellite Remote Sensing and GIS Applications in Agricultural Meteorology.
Kadhim, N., Mourshed, M., & Bray, M. (2016). Advances in remote sensing applications for urban sustainability. Euro-Mediterranean Journal for Environmental Integration, 1(1), 7. doi:10.1007/s41207-016-0007-4
Krishan, M., Jha, S., Das, J., Singh, A., Goyal, M. K., & Sekar, C. (2019). Air quality modelling using long short-term memory (LSTM) over NCT-Delhi, India. Air Quality, Atmosphere & Health, 12(8), 899–908. doi:10.1007/s11869-019-00696-7
Li, Z.-L., Wu, H., Duan, S.-B., Zhao, W., Ren, H., Liu, X., … Zhou, C. (2023). Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Reviews of Geophysics, 61(1), e2022RG000777. doi:https://doi.org/10.1029/2022RG000777
Liu, Z., Zhan, W., Bechtel, B., Voogt, J., Lai, J., Chakraborty, T., … Lee, X. (2022). Surface warming in global cities is substantially more rapid than in rural background areas. Communications Earth & Environment, 3(1), 219. doi:10.1038/s43247-022-00539-x
M, P. B., & Suresh Babu, S. (2018). Estimation of Land Surface Temperature using LANDSAT 8 Data. International Journal of Advance Research. Retrieved from www.IJARIIT.com
Oke, T. (1982). The energetic basis of urban heat island. Quarterly Journal of the Royal Meteorological Society, 108, 1–24. doi:10.1002/qj.49710845502
O’Malley, C., Piroozfar, P., Farr, E. R. P., & Pomponi, F. (2015). Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustainable Cities and Society, 19, 222–235. doi:https://doi.org/10.1016/j.scs.2015.05.009
Pandey, A. K., Singh, S., Berwal, S., Kumar, D., Pandey, P., Prakash, A., … Kumar, K. (2014). Spatio – temporal variations of urban heat island over Delhi. Urban Climate, 10, 119–133. doi:https://doi.org/10.1016/j.uclim.2014.10.005
Pramanik, S., & Punia, M. (2020). Land use/land cover change and surface urban heat island intensity: source–sink landscape-based study in Delhi, India. Environment, Development and Sustainability, 22(8), 7331–7356. doi:10.1007/s10668-019-00515-0
Raja, P., Singh, N., Srinivas, C. V, Singhal, M., Chauhan, P., Singh, M., & Sinha, N. K. (2018). Analyzing energy–water exchange dynamics in the Thar desert. Climate Dynamics, 50(9), 3281–3300. doi:10.1007/s00382-017-3804-9
Rajput, J., Sena, D., Singh, D. K., Mani, I., & IMD, M. (2023). Trend assessment of rainfall, temperature and relative humidity using non-parametric tests in the national capital region, Delhi, 74, 593–606.
Ramasamy, R., & K., E. (2020). Impact of urbanisation on formation of urban heat island in Tirupur region using geospatial technique. Indian Journal of Geo-Marine Sciences, 49, 1593–1598.
Rastogi, T., Singh, J., Singh, N., Chauhan, P., Yadav, R. R., & Pandey, B. (2023). Temperature variability over Dokriani glacier region, Western Himalaya, India. Quaternary International, 664, 33–41. doi:https://doi.org/10.1016/j.quaint.2023.05.013
Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd ACM National Conference, ACM 1968, 517–524. doi:10.1145/800186.810616
Singh, D., Vardhan, M., Sahu, R., Chatterjee, D., Chauhan, P., & Liu, S. (2023). Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data. Hydrology and Earth System Sciences, 27(5), 1047–1075. doi:10.5194/HESS-27-1047-2023,
Singh, N., Shekhar, M., Parida, B. R., Gupta, A. K., Sain, K., Rai, S. K., … Montagnani, L. (2022). Tree-Ring Isotopic Records Suggest Seasonal Importance of Moisture Dynamics Over Glacial Valleys of the Central Himalaya. Frontiers in Earth Science, 10, 868357. doi:10.3389/FEART.2022.868357/ENDNOTE
Singh, N., Singh, J., Gupta, A. K., Bräuning, A., Dimri, A. P., Ramanathan, A. L., … Raja, P. (2021). Climate-driven acceleration in forest evapotranspiration fuelling extreme rainfall events in the Himalaya. Environmental Research Letters, 16(8), 084042. doi:10.1088/1748-9326/ac14ed
Singh, S., Mall, R. K., & Singh, N. (2021). Changing spatio-temporal trends of heat wave and severe heat wave events over India: An emerging health hazard. International Journal of Climatology, 41(S1), E1831–E1845. doi:https://doi.org/10.1002/joc.6814
Takebayashi, H., Misaka, I., & Akagawa, H. (2020). Chapter 2 - Adaptation measures and their performance. In H. Takebayashi & M. Moriyama (Eds.), Adaptation Measures for Urban Heat Islands (pp. 9–37). Academic Press. doi:https://doi.org/10.1016/B978-0-12-817624-5.00002-6
Thiessen, A. H. (1911). Precipitation averages for large areas. Monthly Weather Review, 39(7), 1082–1089. doi:https://doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2
Wu, G. X., Liu, Y., Zhu, X., Li, W., Ren, R., Duan, A., & Liang, X. (2009). Multi-scale forcing and the formation of subtropical desert and monsoon. Ann. Geophys., 27(9), 3631–3644. doi:10.5194/angeo-27-3631-2009
Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology, 1(1), 9–23. doi:10.1093/jpe/rtm005
Yang, Y.-J., Wu, B.-W., Shi, C., Zhang, J.-H., Li, Y.-B., Tang, W.-A., Shi, T. (2013). Impacts of Urbanization and Station-relocation on Surface Air Temperature Series in Anhui Province, China. Pure and Applied Geophysics, 170(11), 1969–1983. doi:10.1007/s00024-012-0619-9

Article Metrics

Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Authors and Indonesian Journal of Geography

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)
ISSN 2354-9114 (online), ISSN 0024-9521 (print)