Temperature and Climate Dynamics in National Capital Region of India

https://doi.org/10.22146/ijg.96393

Areesha Areesha(1), Pankaj Chauhan(2*), Rizwan Ahmed(3), Sanjukta Bhaduri(4), Dharmaveer Singh(5), Md Kaikubad Ali(6)

(1) Interdisciplinary Department of Remote Sensing and GIS Applications, AMU, Aligarh-202002, India
(2) Department of Glaciology and Environmental Geology, Wadia Institute of Himalayan Geology, Dehradun-248001, India and Academy of Scientifi and Innovative Research (AcSIR), Ghaziabad-201002, India
(3) Interdisciplinary Department of Remote Sensing and GIS Applications, AMU, Aligarh-202002, India
(4) Academy of Scientifi and Innovative Research (AcSIR), Ghaziabad-201002, India
(5) Department of Geo-informatics, Symbiosis International (Deemed University), Pune-412115, India
(6) 
(*) Corresponding Author

Abstract


Climate change and increase in global surface temperature are growing concerns worldwide, especially big urban agglomerations like National Capital Region of India, New Delhi and surrounding region have experienced exponential urbanization paving way to horizontal spilling of urban built-up areas, which consequently amplifid the climate variability and surface temperature change over the past few decades. Threfore, the city is highly susceptible to several climate extremes, including heat waves, cold waves, droughts, and flods, impacting socioeconomic lives of over 20 million population. In this study, we applied remote sensing and GIS approaches to study climate variability and its impacts on urban areas. Indicators such as the Land Surface Temperature (LST), Urban Heat Islands (UHI), Normalized Diffrence Vegetation Index (NDVI), and Land Use Land Cover (LULC), were calculated using satellite data for the years 1993, 2000, 2010, and 2020. Th result shows that LST values sharply rose as the maximum value reached 6.9°C in the last three decades (1993-2020), and UHIs maximum values reached 1.76, indicating a clear warming trend in the study area. During this period, the NDVI levels have decreased considerably, going from 0.59 to 0.21, which can be attributed to the expanding urbanization and the decreased green area. Th LULC loss and gain analysis revealed that the urban area has rapidly expanded. In contrast, it resulted in loss of agricultural land, barren and scrubs, water bodies and forest area. Th results show vast climate variability in the region posing threat to environment and socio-economic livelihood of the population.

Keywords


Climate variability; Climate change; Global warming; UHI; LST; Geospatial approaches



References

2018 — Global Warming of 1.5 oC. (n.d.). Retrieved from https://www.ipcc.ch/sr15/2018/

Atzberger, C. (2013). Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sensing, 5(2), 949–981. doi:10.3390/rs5020949

CERES – Clouds and the Earth’s Radiant Energy System. (n.d.). Retrieved 2 May 2025, from https://ceres.larc.nasa.gov/

Chauhan, P., Darshan, M., Kalachand, S., Ram L., R., Sudhir Kumar, S., & and Singh, D. (2022). Assessing the vulnerability of watersheds to environmental degradation in the lesser Himalayan region using satellite data and a series of models. Geocarto International, 37(27), 18372–18399. doi:10.1080/10106049.2022.2142958

Chauhan, P., Singh, N., Chauniyal, D. D., Ahluwalia, R. S., & Singhal, M. (2017). Differential behaviour of a Lesser Himalayan watershed in extreme rainfall regimes. Journal of Earth System Science, 126(2), 22. doi:10.1007/s12040-017-0796-0

Gao, Y., Skutsch, M., Paneque-Gálvez, J., & Ghilardi, A. (2020). Remote sensing of forest degradation: a review. Environmental Research Letters, 15(10), 103001. doi:10.1088/1748-9326/abaad7

Gašparović, M., & and Singh, S. K. (2023). Urban surface water bodies mapping using the automatic k-means based approach and sentinel-2 imagery. Geocarto International, 38(1), 2148757. doi:10.1080/10106049.2022.2148757

Hsu, A., Sheriff, G., Chakraborty, T., & Manya, D. (2021). Disproportionate exposure to urban heat island intensity across major US cities. Nature Communications, 12(1), 2721. doi:10.1038/s41467-021-22799-5

IMD | Environmental Monitoring Services. (n.d.). Retrieved 2 May 2025, from https://mausam.imd.gov.in/imd_latest/contents/environmental-monitoring-services.php

Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021 – The Physical Science Basis. Climate Change 2021 – The Physical Science Basis. doi:10.1017/9781009157896

Jabbar, M., & Yusoff, M. (2022). Assessing The Spatiotemporal Urban Green Cover Changes and Their Impact on Land Surface Temperature and Urban Heat Island in Lahore (Pakistan). GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY, 15, 130–140. doi:10.24057/2071-9388-2021-005

Jeyaseelan, A. (2004). Droughts & Floods Assessment and Monitoring using Remote sensing and GIS. In Satellite Remote Sensing and GIS Applications in Agricultural Meteorology.

Kadhim, N., Mourshed, M., & Bray, M. (2016). Advances in remote sensing applications for urban sustainability. Euro-Mediterranean Journal for Environmental Integration, 1(1), 7. doi:10.1007/s41207-016-0007-4

Krishan, M., Jha, S., Das, J., Singh, A., Goyal, M. K., & Sekar, C. (2019). Air quality modelling using long short-term memory (LSTM) over NCT-Delhi, India. Air Quality, Atmosphere & Health, 12(8), 899–908. doi:10.1007/s11869-019-00696-7

Li, Z.-L., Wu, H., Duan, S.-B., Zhao, W., Ren, H., Liu, X., … Zhou, C. (2023). Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Reviews of Geophysics, 61(1), e2022RG000777. doi:https://doi.org/10.1029/2022RG000777

Liu, Z., Zhan, W., Bechtel, B., Voogt, J., Lai, J., Chakraborty, T., … Lee, X. (2022). Surface warming in global cities is substantially more rapid than in rural background areas. Communications Earth & Environment, 3(1), 219. doi:10.1038/s43247-022-00539-x

M, P. B., & Suresh Babu, S. (2018). Estimation of Land Surface Temperature using LANDSAT 8 Data. International Journal of Advance Research. Retrieved from www.IJARIIT.com

Oke, T. (1982). The energetic basis of urban heat island. Quarterly Journal of the Royal Meteorological Society, 108, 1–24. doi:10.1002/qj.49710845502

O’Malley, C., Piroozfar, P., Farr, E. R. P., & Pomponi, F. (2015). Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustainable Cities and Society, 19, 222–235. doi:https://doi.org/10.1016/j.scs.2015.05.009

Pandey, A. K., Singh, S., Berwal, S., Kumar, D., Pandey, P., Prakash, A., … Kumar, K. (2014). Spatio – temporal variations of urban heat island over Delhi. Urban Climate, 10, 119–133. doi:https://doi.org/10.1016/j.uclim.2014.10.005

Pramanik, S., & Punia, M. (2020). Land use/land cover change and surface urban heat island intensity: source–sink landscape-based study in Delhi, India. Environment, Development and Sustainability, 22(8), 7331–7356. doi:10.1007/s10668-019-00515-0

Raja, P., Singh, N., Srinivas, C. V, Singhal, M., Chauhan, P., Singh, M., & Sinha, N. K. (2018). Analyzing energy–water exchange dynamics in the Thar desert. Climate Dynamics, 50(9), 3281–3300. doi:10.1007/s00382-017-3804-9

Rajput, J., Sena, D., Singh, D. K., Mani, I., & IMD, M. (2023). Trend assessment of rainfall, temperature and relative humidity using non-parametric tests in the national capital region, Delhi, 74, 593–606.

Ramasamy, R., & K., E. (2020). Impact of urbanisation on formation of urban heat island in Tirupur region using geospatial technique. Indian Journal of Geo-Marine Sciences, 49, 1593–1598.

Rastogi, T., Singh, J., Singh, N., Chauhan, P., Yadav, R. R., & Pandey, B. (2023). Temperature variability over Dokriani glacier region, Western Himalaya, India. Quaternary International, 664, 33–41. doi:https://doi.org/10.1016/j.quaint.2023.05.013

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd ACM National Conference, ACM 1968, 517–524. doi:10.1145/800186.810616

Singh, D., Vardhan, M., Sahu, R., Chatterjee, D., Chauhan, P., & Liu, S. (2023). Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data. Hydrology and Earth System Sciences, 27(5), 1047–1075. doi:10.5194/HESS-27-1047-2023,

Singh, N., Shekhar, M., Parida, B. R., Gupta, A. K., Sain, K., Rai, S. K., … Montagnani, L. (2022). Tree-Ring Isotopic Records Suggest Seasonal Importance of Moisture Dynamics Over Glacial Valleys of the Central Himalaya. Frontiers in Earth Science, 10, 868357. doi:10.3389/FEART.2022.868357/ENDNOTE

Singh, N., Singh, J., Gupta, A. K., Bräuning, A., Dimri, A. P., Ramanathan, A. L., … Raja, P. (2021). Climate-driven acceleration in forest evapotranspiration fuelling extreme rainfall events in the Himalaya. Environmental Research Letters, 16(8), 084042. doi:10.1088/1748-9326/ac14ed

Singh, S., Mall, R. K., & Singh, N. (2021). Changing spatio-temporal trends of heat wave and severe heat wave events over India: An emerging health hazard. International Journal of Climatology, 41(S1), E1831–E1845. doi:https://doi.org/10.1002/joc.6814

Takebayashi, H., Misaka, I., & Akagawa, H. (2020). Chapter 2 - Adaptation measures and their performance. In H. Takebayashi & M. Moriyama (Eds.), Adaptation Measures for Urban Heat Islands (pp. 9–37). Academic Press. doi:https://doi.org/10.1016/B978-0-12-817624-5.00002-6

Thiessen, A. H. (1911). Precipitation averages for large areas. Monthly Weather Review, 39(7), 1082–1089. doi:https://doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2

Wu, G. X., Liu, Y., Zhu, X., Li, W., Ren, R., Duan, A., & Liang, X. (2009). Multi-scale forcing and the formation of subtropical desert and monsoon. Ann. Geophys., 27(9), 3631–3644. doi:10.5194/angeo-27-3631-2009

Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology, 1(1), 9–23. doi:10.1093/jpe/rtm005

Yang, Y.-J., Wu, B.-W., Shi, C., Zhang, J.-H., Li, Y.-B., Tang, W.-A., Shi, T. (2013). Impacts of Urbanization and Station-relocation on Surface Air Temperature Series in Anhui Province, China. Pure and Applied Geophysics, 170(11), 1969–1983. doi:10.1007/s00024-012-0619-9



DOI: https://doi.org/10.22146/ijg.96393

Article Metrics

Abstract views : 60

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Authors and Indonesian Journal of Geography

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC