Groundwater Chemistry Characterization in the South and Southeast Merapi Volcano, Indonesia
Heru Hendrayana(1*), Agung Harijoko(2), Indra Agus Riyanto(3), Azmin Nuha(4), Ruslisan Ruslisan(5)
(1) Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
(2) Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia
(4) Groundwater Working Group (GWWG), Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
(5) GIS Department Wilmar Nabati, Indonesia
(*) Corresponding Author
Abstract
Merapi Volcano, which differs from volcanoes in other climates due to its location on the Indonesian Maritime Continent influenced by ENSO, ICTZ, and Moonsons, plays an essential role as a source of groundwater for the surrounding population. Some problems associated with groundwater in Mount Merapi are high utilization compared to other volcanoes worldwide, changes in land use, pollution, and its lowering table. Therefore, this study aims to compare the hydrogeological characteristics and aquifer systems of the southern and southeastern parts of Merapi Volcano. The hydrogeological characteristics were obtained from geological mapping, surface and subsurface, as well as rock XRF tests. Meanwhile, the hydrogeochemical characterization was determined through chemical data using the Trilinear Piper, Kurlov, Fingerprint, Composition, and Harker Diagram methods. The results of the Trilinear Piper, Kurlov, Fingerprint, and Composition Diagram methods show that Mount Merapi has 3, 7, 4, and 2 types of patterns different from other volcanoes in the world. On the other hand, the Harker diagram has the same pattern of Mg-Ca and Mg-Na as several other volcanoes. In conclusion, the hydrostratigraphy in the southern part of the volcano, consists of aquifuge, aquiclude, and aquifer, while in the southeast, there are aquitards of volcanic sandstone and tuff.
Keywords
Full Text:
PDFReferences
Afsin, M., Allen, D. M., Kirste, D., Durukan, U. G., Gurel, A., & Oruc, O. (2014). Mixing processes in hydrothermal spring systems and implications for interpreting geochemical data: A case study in the Cappadocia region of Turkey. Hydrogeology Journal, 22(1), 7–23. https://doi.org/10.1007/s10040-013-1056-2
Aldrian, E., & Dwi Susanto, R. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435–1452. https://doi.org/10.1002/joc.950
Appelo, C. A. J., and Postma, D. (2005) Geochemistry, groundwater, and pollution, 2nd edn. Balkema Publishers, Amsterdam.
Baud, B., Lachassagne, P., Jourde, H., De Montety, V., Fadillah, A., Dörfliger, N., Hendrayana, H., and Rachmansyah, A. (2021). Preliminary conceptual model of the Arjuno Welirang hydrogeological system, and comparison with the Bromo Tengger: An illustration of the hydrogeological systems diversity in volcanic areas. IOP Conference Series: Earth and Environmental Science, 851(1). https://doi.org/10.1088/1755-1315/851/1/012016
Bellia, C., Gallardo, A. H., Yasuhara, M., & Kazahaya, K. (2015). Geochemical characterization of groundwater in a volcanic system. Resources, 4(2), 358–377. https://doi.org/10.3390/resources4020358
Berhe, A. B., Erdem Dokuz, U., and Çelik, M. (2017). Assessment of hydrogeochemistry and environmental isotopes of surface and groundwaters in the Kütahya Plain, Turkey. Journal of African Earth Sciences, 134: 230–240. https://doi.org/10.1016/j.jafrearsci.2017.06.015
Boulom, J., Putra, D.P.E., and Wilopo, W. (2015). Chemical composition and hydraulic connectivity of springs in the Southern section of Merapi Volcano. Journal of Applied Geology, 6(1): 1–11. https://doi.org/10.22146/jag.7212
BPS. (2021). Provinsi DI Yogyakarta dan Jawa Tengah Dalam angka tahun 2021. Badan Pusat Statistik, Jakarta.
Bremer, L.L., Elshall, A.S., Wada, C.A., Brewington, L., Delevaux, J.M.S., El-Kadi, A.I., Voss, C.I., and Burnett, K.M. (2021). Effects of land-cover and watershed protection futures on sustainable groundwater management in a heavily used aquifer in Hawai'i (USA). Hydrogeology Journal, 29(5): 1749–1765. https://doi.org/10.1007/s10040-021-02310-6
Bronto, S. (2009). Waduk Parangjoho dan Songputri: alternatif sumber erupsi Formasi Semilir di daerah Eromoko, Kabupaten Wonogiri, Jawa Tengah. Indonesian Journal on Geoscience, 4(2): 79–92. https://doi.org/10.17014/ijog.vol4no2.20091. (in Indonesian with English abstract)
BSN. (2015). Penyusunan Neraca Spasial Sumber Daya Alam - Bagian 1: Sumber Daya Air SNI 6728.1:2015. Badan Standardisasi Nasional, Jakarta.
Cabrera, M. C., & Custodio, E. (2004). Groundwater flow in a volcanic-sedimentary coastal aquifer: Telde area, Gran Canaria, Canary islands, Spain. Hydrogeology Journal, 12(3), 305–320. https://doi.org/10.1007/s10040-003-0316-y
Cahyadi, A., Haryono, E., Adji, T. N., Widyastuti, M., Riyanto, I. A., Muhammad, D. T. N., & Tastian, N. F. (2021). Rainfall variability in gunung sewu karst area, java island, indonesia. Indonesian Journal of Forestry Research, 8(1), 23–35. https://doi.org/10.20886/IJFR.2021.8.1.23-35
De Bélizal, E., Lavigne, F., Hadmoko, D.S., Degeai, J.P., Dipayana, G.A., Mutaqin, B.W., Marfai, M.A., Coquet, M., Mauff, B. Le., Robin, A. K., Vidal, C., Cholik, N., and Aisyah, N. (2013). Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: A major risk. Journal of Volcanology and Geothermal Research, 261: 330–347. https://doi.org/10.1016/j.jvolgeores.2013.01.010
Delcamp, A., Roberti, G., and van Wyk de Vries, B. (2016). Water in volcanoes: evolution, storage and rapid release during landslides. Bulletin of Volcanology, 78(12):1-12. https://doi.org/10.1007/s00445-016-1082-8
Demlie, M., Wohnlich, S., Wisotzky, F., and Gizaw, B. (2007). Groundwater recharge, flow and hydrogeochemical evolution in a complex volcanic aquifer system, central Ethiopia. Hydrogeology Journal, 15(6): 1169–1181. https://doi.org/10.1007/s10040-007-0163-3
Djaeni A. (1982). Hydrogeology map of Indonesia sheet IX Yogyakarta (Jawa). Geological Research and Development Centre, Bandung.
Döll, P., and Fiedler, K. (2008). Global-scale modeling of groundwater recharge. Hydro. Earth Syst. Sci, 12, 863-885. www.hydrol-earth-Syst-sci.net/12/863/2008/
El-Kadi, A. I., Tillery, S., Whittier, R. B., Hagedorn, B., Mair, A., Ha, K., & Koh, G. W. (2014). Assessing sustainability of groundwater resources on Jeju Island, South Korea, under climate change, drought, and increased usage. Hydrogeology Journal, 22(3), 625–642. https://doi.org/10.1007/s10040-013-1084-y
Fackrell, J, K., Glenn, C.R., Thomas, D., Whittier, R., and Popp, B.N. (2020). Stable isotopes of precipitation and groundwater provide new insight into groundwater recharge and flow in a structurally complex hydrogeologic system: West Hawai'i, USA. Hydrogeology Journal, 28(4): 1191–1207. https://doi.org/10.1007/s10040-020-02143-9
Fathmawati, F., Fachiroh, J., Sutomo, A.H., and Putra, D.P.E. (2018). Origin and distribution of nitrate in water well of settlement areas in Yogyakarta, Indonesia. Environmental Monitoring and Assessment, 190(11). https://doi.org/10.1007/s10661-018-6958-y
Fenta, M.C., Anteneh, Z.L., Szanyi, J., and Walker, D. (2020). Hydrogeological framework of the volcanic aquifers and groundwater quality in Dangila Town and the surrounding area, Northwest Ethiopia. Groundwater for Sustainable Development, 11:1-13. https://doi.org/10.1016/j.gsd.2020.100408
Fetter, C.W. (2000). Applied Hydrogeology, 4nd edn. Prentice-Hall Inc, New Jersey.
Furi, W., Razack, M., Abiye, T. A., Kebede, S., & Legesse, D. (2012). Hydrochemical characterisation of complex volcanic aquifers in a continental rifted zone: The Middle Awash basin, Ethiopia. Hydrogeology Journal, 20(2), 385–400. https://doi.org/10.1007/s10040-011-0807-1
Gibson, M. L., & Hinman, N.W. (2013). Mélange d’eau hydrothermale et d’eau de nappe autour des sources chaudes du Parc National de Yellowstone (USA): Hydrologie et géochimie. Hydrogeology Journal, 21(4), 919–933. https://doi.org/10.1007/s10040-013-0965-4
Gray, S.T., Graumlich, L.J., & Betancourt, J.L. (2007). Annual precipitation in the Yellowstone National Park region since AD 1173. Quaternary Research, 68(1), 18–27. https://doi.org/10.1016/j.yqres.2007.02.002
Hadian, M.S.D., Hendarmawan, Sulaksanan, N., and Azy, F.N. (2016). Hydrogeology of volcanic characterisation based on Volcanic Facies,Ground, Water Chemical Content, and Stable Isotope of Groundwater. Proceeding. International of Chemical, Biology, and Environment Engineering. https://DOI:10.7763/IPCBEE.2016.V94.22
Hendrayana, H., and Vicente, V.A.S (2013). [Groundwater reserve based on geometry and configuration ofaquifer sys- tem of Yogyakarta-Sleman groundwater basin] Cadangan air tanah berdasarkan geometri dan konfigurasi sistem akuifer cekungan air tanah Yogyakarta-Sleman. Proceeding Seminar Nasional Kebumian 6, (356–370) Teknik Geologi Universitas Gadjah Mada. https://repository.ugm.ac.id/135207/1/356-375/L03.pdf
Hendrayana., H., Nuha, A., Riyanto, I.A., and Aprimanto, B. (2021). Kajian perubahan muka air tanah di Cekungan Air tanah Yogyakarta-Sleman. Majalah Geografi Indonesia, 35(1), 30–44. https://doi.org/10.22146/mgi.62396 (in Indonesian with English abstract)
Hendrayana, H., Riyanto, I.A., and Nuha, A. (2020). Tingkat pemanfaatan air tanah di Cekungan Air tanah (CAT) Yogyakarta-Sleman. Geodika: Jurnal Kajian Ilmu Dan Pendidikan Geografi, 4(2), 127–137. https://doi.org/10.29408/geodika.v4i2.2643 (in Indonesian with English abstract)
Hendrayana, H. (1993). Hydrogeologie und Grundwassergerwinnung im Yogyakarta Becken Indonesien. Disertation. Arbeit der RWTH Aachen, Germany.
Herdiansyah, A.R., Hastari, N.R.F., Ramdani, H.P., and Putri, R.F,. (2020). Land use change and its impact on rice productivity in Sleman Regency 2007-2017. IOP Conference Series: Earth and Environmental Science, 451(1). https://doi.org/10.1088/1755-1315/451/1/012054
Hernández-Pérez, E., Levresse, G., Carrera-Hernandez, J., Inguaggiato, C., Vega-González, M., Corbo-Camargo, F., Carreón-Freyre, D. C., Billarent-Cedillo, A., Contreras, F. J. S., & Hernández, C. P. R. (2022). Geochemical and isotopic multi-tracing (δ18O, δ2H, δ13C, Δ14C) of groundwater flow dynamics and mixing patterns in the volcanoclastic aquifer of the semiarid San Juan del Río Basin in central Mexico. Hydrogeology Journal, 30, 2073–2095. https://doi.org/10.1007/s10040-022-02536-y
Herrera, C., and Custodio, E. (2008). Conceptual hydrogeological model of volcanic Easter Island (Chile) after chemical and isotopic surveys. Hydrogeology Journal, 16(7), 1329–1348. https://doi.org/10.1007/s10040-008-0316-z
Hiscock, K.M., and Bense, V.F. (2014). Hydrogeology: principles and practices, 2nd edition. Wiley Blackwell, London.
Hurwitz, S., Lowenstern, J. B., & Heasler, H. (2007). Spatial and temporal geochemical trends in the hydrothermal system of Yellowstone National Park: Inferences from river solute fluxes. Journal of Volcanology and Geothermal Research, 162(3–4), 149–171. https://doi.org/10.1016/j.jvolgeores.2007.01.003
Indonesian Geospatial Agency-BIG. (2004). Land use map of the Yogyakarta sheet, Java. Indonesian Geospatial Agency, Jakarta.
Irawan, D.E., Puradimaja, D.J., Notosiswoyo, S., and Soemintadiredja, P. (2009). Hydrogeochemistry of volcanic hydrogeology based on cluster analysis of Mount Ciremai, West Java, Indonesia. Journal of Hydrology, 376(1–2), 221–234. https://doi.org/10.1016/j.jhydrol.2009.07.033
Join, J.L., Folio, J.L., and Robineau, B. (2005). Aquifers and groundwater within active shield volcanoes. Evolution of conceptual models in the Piton de la Fournaise volcano. Journal of Volcanology and Geothermal Research, 147(1–2), 187–201. https://doi.org/10.1016/j.jvolgeores.2005.03.013
Kebede, S., Travi, Y., Asrat, A., Alemayehu, T., Ayenew, T., & Tessema, Z. (2008). Groundwater origin and flow along selected transects in Ethiopian rift volcanic aquifers. Hydrogeology Journal, 16(1), 55–73. https://doi.org/10.1007/s10040-007-0210-0
Kulkarni, H., Vijay Shankar, P.S., Deolankar, S.B., and Shah, M. (2004). Groundwater demand management at local scale in rural areas of India: A strategy to ensure water well sustainability based on aquifer diffusivity and community participation. Hydrogeology Journal, 12(2), 184–196. https://doi.org/10.1007/s10040-004-0320-x
Kӓmpfner, L., Rüde, T.R., and Putra, D.P.E. (2021). Characterisation of shallow groundwater chemistry in the Yogyakarta basin, Central Java. IOP Conference Series: Earth and Environmental Science, 851(1). https://doi.org/10.1088/1755-1315/851/1/012015
Lagarde, R.L., Boston, P.J., Campbell, A.R., Hose, L.D., Axen, G., and Stafford, K.W. (2014). Hydrogéologie du nord de la Sierra du Chiapas, Mexique: Un modèle conceptuel établi à partir de la caractérisation géochimique de sources karstiques saumâtres riches en sulfures. Hydrogeology Journal, 22(6), 1447–1467. https://doi.org/10.1007/s10040-014-1135-z
Larsen, L.M., Fitton, J.G., Bailey, J.C., and Kystol, J. (1998). XRF analyses of volcanic rocks from Leg 152 by laboratories in Edinburgh and Copenhagen: implications for the mobility of yttrium and other elements during alteration. Proceedings of the Ocean Drilling Program: Scientific Results, 152, 425–429. https://doi.org/10.2973/odp.proc.sr.152.246.1998
Lisan, A.R.K., and Adji, T.N. (2017). Identifikasi jebakan air tanah asin menggunakan pendugaan Geolistrik di wilayah Selatan Kabupaten Klaten, Jawa Tengah. Jurnal Bumi Indonesia, 6(2), 1-14. (in Indonesian with English abstract)
Loh, Y.S., Yidana, S.M, Asiedu, D., Akabzaa, T., and Jørgensen, N.O. (2012). Hydrochemical characterisation of groundwater in parts of the Volta Basin, Northern Ghana. Ghana Mining Journal, 13(1), 24-32.
Madrigal, H., Pablo, S., Gavilán, J., Vadillo, I., Alicia, P., & Sánchez, F. (2022). Discriminant model and hydrogeochemical processes for characterising preferential flow paths in four interconnected volcanic aquifers in Costa Rica. Hydrogeology Journal, 30, 2315-2340. https://doi.org/10.1007/s10040-022-02557-7
Mahlknecht, J., Schneider, J. F., Merkel, B. J., de Leon, I. N., & Bernasconi, S. M. (2004). Groundwater recharge in a sedimentary basin in semi-arid Mexico. Hydrogeology Journal, 12(5), 511–530. https://doi.org/10.1007/s10040-004-0332-6
Marfai, M.A., Cahyadi, A., Hadmoko, D.S., and Sekaranom, A.B. (2012). Sejarah letusan Gunung Merapi berdasarkan fasies gunungapi di Daerah Aliran Sungai Bedog, Daerah Istimewa Yogyakarta. Jurnal RISET Geologi Dan Pertambangan, 22(2), 73. https://doi.org/10.14203/risetgeotam2012.v22.59 (in Indonesian with English abstract)
Margat, J., and Gun, J. van der. (2013). Geography of groundwater resources In groundwater around the world, a geographic synopsis. CRC Press Taylor and Francis Group, New York.
Maria, A., and Hermes, O.D. (2001). Volcanic rocks in the Narragansett basin, Southeastern New England: Petrology and significance to early basin formation. American Journal of Science, 301(3), 286–312. https://doi.org/10.2475/ajs.301.3.286
Mazor, E. (1991). Chemical and isotopic groundwater hydrology 3rd Edition. Marcel Dekker INC, New York.
McNeely, R.N., Nelmanis, V.P., and Dwyer, L. (1979). Water quality sourcebook, a guide to water quality parameters. Inland Waters Directorate Water Quality Branch, Ottawa.
Minissale, A., Magro, G., Vaselli, O., Verrucchi, C., & Perticone, I. (1997). Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy). Journal of Volcanology and Geothermal Research, 79(3–4), 223–251. https://doi.org/10.1016/S0377-0273(97)00028-0
Ministry of Agriculture. (2000). Semi detailed soil map Yogyakarta Province. Centre of Soil and Agroclimate Research, Bandung.
Morales-Arredondo, I., Rodríguez, R., Armienta, M. A., & Villanueva-Estrada, R. E. (2016). L’origine de l’arsenic et du fluor des eaux souterraines d’un bassin volcano-sédimentaire du Mexique Central: hypothèse hydrochimique. Hydrogeology Journal, 24(4), 1029–1044. https://doi.org/10.1007/s10040-015-1357-8
Morales-Casique, E. (2012). Mixing of groundwaters with uncertain end-members: Case study in the Tepalcingo-Axochiapan aquifer, Mexico. Hydrogeology Journal, 20(3), 605–613. https://doi.org/10.1007/s10040-011-0826-y
Mulligan, B.M., Ryan, M.C., and Cámbara, T.P. (2011). Delineating volcanic aquifer recharge areas using geochemical and isotopic tools. Hydrogeology Journal, 19(7), 1335–1347. https://doi.org/10.1007/s10040-011-0766-6
Mulyaningsih, S. (2006). Perkembangan geologi pada Kuarter Awal sampai masa sejarah di Dataran Yogyakarta. Indonesian Journal on Geoscience, 1(2), 103–113. https://doi.org/10.17014/ijog.vol1no2.20065. (in Indonesian with English abstract)
Nasr, M., and Zahran, H.F. (2014). Using of pH as a tool to predict the salinity of groundwater for irrigation purpose using artificial neural network. Egyptian Journal of Aquatic Research, 40(2), 111–115. https://doi.org/10.1016/j.ejar.2014.06.005
Ohmer, M., Liesch, T., Geoppert, N., Goldscheider, N. (2017). On the optimal selection of interpolation methods for groundwater contouring: an example of propagation of uncertainty regarding inter-aquifer exchange. Advance in Water Resources, 109, 121–132.
Ono, M., Machida, I., Ikawa, R., Kamitani, T., Oyama, K., Muranaka, Y., Ito, A., & Marui, A. (2019). Regional groundwater flow system in a stratovolcano adjacent to a coastal area: a case study of Mt. Fuji and Suruga Bay, Japan. Hydrogeology Journal, 27(2), 717–730. https://doi.org/10.1007/s10040-018-1889-9
Oyedotun, T.D.T. (2018). X-ray fluorescence (XRF) in the investigation of the composition of earth materials: a review and an overview. Geology, Ecology, and Landscapes, 2(2), 148–154. https://doi.org/10.1080/24749508.2018.1452459
Panagopoulos, G., Panagiotaras, D., & Giannoulopoulos, P. (2013). Groundwater Quality Assessment of the Limnos Island Volcanic Aquifers, Greece. Water Environment Research, 85(5), 422–433. https://doi.org/10.2175/106143012x13373575831439
Pannekoek, A.J. (1949). Outline of the geomorphology of Java. S.I Publisher, Leiden.
Parisi, S., Paternoster, M., Kohfahl, C., Pekdeger, A., Meyer, H., Hubberten, H. W., Spilotro, G., & Mongelli, G. (2011). Groundwater recharge areas of a volcanic aquifer system inferred from hydraulic, hydrogeochemical and stable isotope data: Mount Vulture, southern Italy. Hydrogeology Journal, 19(1), 133–153. https://doi.org/10.1007/s10040-010-0619-8
Piscopo, V., Armiento, G., Baiocchi, A., Mazzuoli, M., Nardi, E., Piacentini, S. M., Proposito, M., & Spaziani, F. (2018). Role of high-elevation groundwater flows in the hydrogeology of the Cimino volcano (central Italy) and possibilities to capture drinking water in a geochemically contaminated environment. Hydrogeology Journal, 26(4), 1027–1045. https://doi.org/10.1007/s10040-017-1718-6
Piscopo, V., Lotti, F., Formica, F., Lana, L., & Pianese, L. (2020). Groundwater flow in the Ischia volcanic island (Italy) and its implications for thermal water abstraction. Hydrogeology Journal, 28(2), 579–601. https://doi.org/10.1007/s10040-019-02070-4
Poetra, R.P., Adji, T.N., Santosa, L.W., and Khakhim, N. (2020). Hydrogeochemical conditions in groundwater systems with various geomorphological units in Kulonprogo Regency, Java Island, Indonesia. Aquatic Geochemistry, 26(4), 421-454. https://doi.org/10.1007/s10498-020-09384-w
Prada, S. N., da Silva, M. O., & Cruz, J. V. (2005). Groundwater behaviour in Madeira, volcanic island (Portugal). Hydrogeology Journal, 13(5–6), 800–812. https://doi.org/10.1007/s10040-005-0448-3
Purnomo, B.J, and Pichler, T. (2015). Geothermal systems on the island of Bali, Indonesia. Journal of Volcanology and Geothermal Research, 304, 349–358. https://doi.org/10.1016/j.jvolgeores.2015.09.016
Putra, D.P.E. (2015). Evolution of groundwater chemistry on the shallow aquifer of Yogyakarta City urban area. Journal of Applied Geology, 3(2), 116–124. https://doi.org/10.22146/jag.7188
Qian, J. H., Robertson, A. W., & Moron, V. (2010). Interactions among ENSO, the monsoon, and diurnal cycle in rainfall variability over Java, Indonesia. Journal of the Atmospheric Sciences, 67(11), 3509–3524. https://doi://0.1175/2010JAS3348.1
Rahardian, A., and Buchori, I. (2016). Dampak perubahan penggunaan lahan terhadap limpasan permukaan dan laju aliran puncak Sub DAS Gajahwong hulu Kabupaten Sleman. Jurnal Pembangunan Wilayah & Kota, 11(4), 127. https://doi.org/10.14710/pwk.v12i2.12890. (in Indonesian with English abstract)
Rahardjo, W., Sukandarrumidi, Rosidi, H.M.D. (1995). Geological map of the Yogyakarta sheet, Java. Geological Research and Development Centre, Bandung.
Rahardjo, W. (2000). Tinjauan geologi dan paleogeografi daerah dataran Gantiwarno, antara Prambanan – Klaten, Jawa Tengah. Proceedings of Indonesian Association of Geologists, the 29th Annual Convention, Bandung. (in Indonesian with English abstract)
Revil, A., Finizola, A., Sortino, F., and Ripepe, M. (2004). Geophysical investigations at Stromboli volcano, Italy: Implications for groundwater flow and paroxysmal activity. Geophysical Journal International, 157(1), 426–440. https://doi.org/10.1111/j.1365-246X.2004.02181.x
Riyanto, I.A., Widyastuti, M., Cahyadi, A., Agniy, R.F, and Adji, T.N. (2020). Groundwater Management Based on Vulnerability to Contamination in the Tropical Karst Region of Guntur Spring, Gunungsewu Karst, Java Island, Indonesia. Environmental Processes, 7(4), 1277–1302. https://doi.org/10.1007/s40710-020-00460-5
Rouhi, H., and Kalantari, N. (2015). Chemical composition of groundwater and brines as a result of hydrogeochemical processes in arid zones: an example from Albaji plain, Khuzestan, Iran. Arabian Journal of Geosciences, 8(10), 8361–8372. https://doi.org/10.1007/s12517-015-1818-3
Santosa, L.W., and Sutikno. (2006). Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area. Indonesian Journal of Geography, 38(1), 53–68. https://doi.org/10.22146/indo.j.geog,2235
Sarminingsih, A., Siwi, H.D., Sutrisno, E., and Zaman, B. (2018). Evaluation the water availability in the Dengkeng River due to land use and climate changes. E3S Web of Conferences, 73. https://doi.org/10.1051/e3sconf/20187303008
Saroli, M., Lancia, M., Albano, M., Casale, A., Giovinco, G., Petitta, M., Zarlenga, F., & dell’Isola, M. (2017). Un modèle conceptuel hydrogéologique de la zone hydrothermale de Suio (Centre de l’Italie). Hydrogeology Journal, 25(6), 1811–1832. https://doi.org/10.1007/s10040-017-1549-5
Selles, A., Deffontaines, B., Hendrayana, H., and Violette, S. (2015). The eastern flank of the Merapi volcano (Central Java, Indonesia): Architecture and implications of volcaniclastic deposits. Journal of Asian Earth Sciences, 108, 33–47. https://doi.org/10.1016/j.jseaes.2015.04.026
Selles, A. (2014). Multi-disciplinary study on the hydrogeological behaviour of the eastern flank of the Merapi volcano, Central Java. PhD thesis. Université Pierre et Marie Curie, Paris.
Siebert, S., Burke, J., Faures, J.M., Frenken, K., Hoogeveen, J., Döll, P., and Portmann, F.T. (2010). Groundwater use for irrigation - A global inventory. Hydrology and Earth System Sciences, 14(10), 1863–1880. https://doi.org/10.5194/hess-14-1863-2010
Singh, L.P., and Kshetrimayum, K.S. (2021). Evaluation of spatial characteristics of groundwater hydrochemical constituents across different geomorphic units of the Imphal Valley in Northeast India. Sustainable Water Resources Management, 7(4), 1–18. https://doi.org/10.1007/s40899-021-00533-9
Sophocleous, M. (2005). Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA. Hydrogeology Journal, 13(2), 351–365.https://doi.org/10.1007/s10040-004-0385-6
Sophocleous, M. (2010). Revue critique: Pratiques, défis et innovations dans le domaine des de la gestion des eaux souterraines de l’aquifère des Grandes Plaines (High Plains), aux Etats Unis d’Amérique - Leçons et recommandations. Hydrogeology Journal, 18(3), 559–575. https://doi.org/10.1007/s10040-009-0540-1
Sugiyama, A., Masuda, S., Nagaosa, K., Tsujimura, M., and Kato, K. (2018). Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA. Biogeosciences, 15, 721-732. https://doi.org/10.5194/bg-2016-78,2016.
Surono, S. (2008). Litostratigrafi dan sedimentasi Formasi Kebo dan Formasi Butak di Pegunungan Baturagung, Jawa Tengah Bagian Selatan. Indonesian Journal on Geoscience, 3(4), 183–193. https://doi.org/10.17014/ijog.vol3no4.20081. (in Indonesian with English abstract)
Todd, D.K., and Mays, L.W. (2005). Groundwater Hydrology, 3rd edn. John Wiley and Sons Inc, Hoboken.
Toulier, A., Baud, B., de Montety, V., Lachassagne, P., Leonardi, V., Pistre, S., Dautria, J.M., Hendrayana, H., Miftakhul, F.M.H, Satrya, M.A., Beon, O., and Jourde, H. (2019). A multidisciplinary study with quantitative analysis of isotopic data for assessing the recharge and functioning of volcanic aquifers: Case of Bromo-Tengger volcano, Indonesia. Journal of Hydrology, 26(2019), 1-30. https://doi.org/10.1016/j.ejrh.2019.100634
UNESCO. (2004). Resources of the World and their use, IHP-VI series on groundwater No. 6. United Nations, Paris.
Ureta, G,. Németh, K., Aguilera, F., and González, R. (2020). Features that favour the prediction of the emplacement location of maar volcanoes: A case study in the central andes, northern chile. Geosciences, 10(12), 1–25. https://doi.org/10.3390/geosciences10120507
van Bemmelen, R.W. (1949). The geology of Indonesia, general geology of Indonesia and adjacent archioelagoes, 2nd edn. Elsevier, The Hague.
Verstappen, H.Th. (2000). Outline of the geomorphology of Indonesia: a case study on tropical geomorphology of a tectigene region. ITC Publication, Enschede.
Vivona, R., Preziosi, E., Madé, B., & Giuliano, G. (2007). Occurrence of minor toxic elements in volcanic-sedimentary aquifers: A case study in central Italy. Hydrogeology Journal, 15(6), 1183–1196. https://doi.org/10.1007/s10040-007-0169-x
Wijatna, A.B., Sudarmadji, Sunarno., and Hendrayana, H. (2008). Tracing the origin of spring water by using environmental isotopes in the southern section of Merapi Volcano. ASEAN Engineering Journal, 2(2), 118–130.
Wilopo, W., Putra, D.P.E., and Hendrayana, H. (2021). Impacts of precipitation, land use change and urban wastewater on groundwater table fluctuation in the Yogyakarta-Sleman Groundwater Basin, Indonesia. Environmental Monitoring and Assessment, 193(2). https://doi.org/10.1007/s10661-021-08863-z
Wredaningrum, I., and Sudibyakto (2014) Analisis perubahan zona agroklimat daerah istimewa yogyakarta ditinjau dari klasifikasi iklim menurut oldeman. Jurnal Bumi Indonensia, 3(4),1-10. (in Indonesian with English abstract)
Zaennudin, A. (2010). The characteristic of eruption of Indonesian active volcanoes in the last four decades. Jurnal Lingkungan Dan Bencana Geologi, 1(2), 113–129.
DOI: https://doi.org/10.22146/ijg.76433
Article Metrics
Abstract views : 3360 | views : 1677Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Heru Hendrayana, Agung Harijoko, Indra Agus Riyanto, Azmin Nuha, Ruslisan Ruslisan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)
ISSN 2354-9114 (online), ISSN 0024-9521 (print)
IJG STATISTIC