Greenhouse Gas Emission from Rice field in Indonesia: Challenge for future research and development

https://doi.org/10.22146/ijg.55681

Miranti Ariani(1), Eko Haryono(2*), Eko Hanudin(3)

(1) 1. Graduate School of Environmental Sciences Gadjah Mada University 2. Indonesian Agricultural Environment Research Insitute
(2) 1. Faculty of Geography Gadjah Mada University 2. Graduate School of Environmental Science
(3) Department of Soil Science Gadjah Mada University
(*) Corresponding Author

Abstract


Rice is an essential crop in Indonesia. Any aspects of rice to increase productivity have been well studied and documented; however, there are still lacking well-documented studies on its environmental aspects, including climate change. Many researches might already be conducted, but only a few have been published in a peer-reviewed journal. There is still a lack of robust data on greenhouse gas (GHG) emissions from the rice field in Indonesia, factors affecting and the technology on how to reduce it. From the reviewed publications, it was found out that research only conducted under a controlled environmental setting. More research on understanding the controlling factors (e.g., water management, rice cultivar, soil types, and fertilizer) of GHG emission from rice field is still needed. The result will introduce a sustainable farming practice,  with low in GHG emissions, high in productivity, simple to apply and generate more income to farmers. This review has identified the gaps for future research and development in Indonesia. The research should meet the need, either national or global strategies. Development of a new farming practice will succeed in the presence of government policies. Therefore an intensive interdisciplinary approach between researcher and other stakeholders should be conducted.


Keywords


GHG emission; rice field; Indonesia; future research

Full Text:

PDF


References

Adhya, T.K., Bharati, K., Mohanty, S.R., Ramakrishnan, B., Rao, V.R., Sethunathan, N. & R. Wassmann, (2000). Methane emission from rice fields at Cuttack, India. Nutrient Cycling in Agroecosystems 58: 95-105.

Adviento-Borbe, M. A. A., & B, Linquist, (2016). Assessing fertilizer N placement on CH4 and N2O emissions in irrigated rice systems. Geoderma, 266, 40–45. https://doi.org/10.1016/j.geoderma.2015.11.034

Ali, M.A., Lee, C.H., & P.J. Kim, (2008). Effect of silicate fertilizer on reducing methane emission during rice cultivation. Biology and Fertility of Soils, 44, 597‒604. doi:10.1007/s00374-007-0243-5

Ariani, M., Kartikawati, R., & P. Setyanto, (2017). GHG emission and rice yield due to organic matter amendment on a poor rainfed rice field. 13th International Conference of ESAFS proceedings pp 95-104

Ball, B. C., Smith, K. A., Klemedtsson, L., Brumme, R., Sitaula, B. K., Hansen, S., & G. W. Horgan, (1997). The influence of soil gas transport properties on methane oxidation in a selection of northern European soils. Journal of Geophysical Research: Atmospheres, 102(D19), 23309–23317. https://doi.org/10.1029/97JD01663

Baruah, K. K., Gogoi, B., Gogoi, P., & P. K. Gupta, (2010). N2O emission in relation to plant and soil properties and yield of rice varieties. Agronomy for Sustainable Development. 30:733-742.

Batjes, N.H., (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science 47, 151–163

Bhattacharyya, P., Dash, P. K., Swain, C. K., Padhy, S. R., Roy, K. S., Neogi, S., & T. Mohapatra, (2019). Mechanism of plant mediated methane emission in tropical lowland rice. Science of the Total Environment, 651, 84–92. https://doi.org/10.1016/j.scitotenv.2018.09.141

Bouwman, A. F., (1991). Agronomic aspects of wetland rice cultivation and associated methane emissions. Biogeochemistry, 15(2), 65-88. doi:10.1007/BF00003218

Bouwman, A. F., Boumans, L. J. M., & N. H. Batjes, (2002). Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles, 16(4), 6-1.

Brye, K. R., Rogers, C. W., Smartt, A. D., Norman, R. J., Hardke, J. T., & E. E. Gbur, (2017). Methane emissions as affected by crop rotation and rice cultivar in the Lower Mississippi River Valley, USA. Geoderma Regional, 11(June), 8–17. https://doi.org/10.1016/j.geodrs.2017.08.004

Butterbach-Bahl, K., Papen, H., & H. Rennenberg, (1997). Impact of gas transport through rice cultivars on methane emission from paddy fields. Plant Cell Environment 20, 1175–1183

Butterbach-bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & S. Zechmeister-boltenstern, (2013). Nitrous oxide emissions from soils : how well do we understand the processes and their controls ? Author for correspondence : Phil Trans R Soc B, 368 (The global nitrogen cycle in the twenty-first century), 1–20. https://doi.org/20130122

Butler, J. H., & S. A. Montzka, (2020). The NOAA annual greenhouse gas index (AGGI). NOAA Earth System Resarch Laboratory, USA. esrl.noaa.gov/gmd/aggi.aggi.html

Campbell, B., Chen, L., Dygert, C., & W. Dick, (2014). Tillage and crop rotation impacts on greenhouse gas fluxes from soil at two long-term agronomic experimental sites in Ohio. Journal of Soil and Water Conservation, 69(6), 543–552. https://doi.org/10.2489/jswc.69.6.543

Carrijo, D. R., Lundy, M. E., & B. A. Linquist, (2017). Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research, 203, 173–180. https://doi.org/10.1016/j.fcr.2016.12.002

Cha-un, N., Chidthaisong, A., Yagi, K., Sudo, S., & S. Towprayoon, (2017). Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management. Agriculture, Ecosystems and Environment, 237, 109–120. https://doi.org/10.1016/j.agee.2016.12.025

Chaichana, N., Bellingrath-kimura, S. D., & S. Komiya, (2018). Comparison of closed chamber and Eddy Covariance methods to improve the understanding of methane fluxes from rice paddy fields in Japan. Atmosphere, 9(356). https://doi.org/10.3390/atmos9090356

Chunmei, X., Liping, C., Song, C., Guang, C., Xiufu, Z., & W. Danying, (2018). Effects of soil microbes on methane emissions from paddy fields under varying soil oxygen conditions. Agronomy Journal, 110(5), 1738. https://doi.org/10.2134/agronj2017.12.0747

Cicerone, R. J., & R. S. Oremland, (1988). Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles, 2(4), 299-327. doi:10.1029/GB002i004p00299

Cicerone, R.J., Delwiche, C.C., Tyler, S.C., & P.R. Zimmerman, (1992). Methane emissions from California rice paddies with varied treatments. Global Biogeochemical Cycles 6, 233–248.

Dannenberg, S. & R. Conrad, (1999). Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 45: 53. doi.org/10.1007/BF00992873

Denmead, O. T., Macdonald, B. C. T., Bryant, G., Naylor, T., Wilson, S., Griffith, D. W. T., & P. W. Moody, (2010). Emissions of methane and nitrous oxide from Australian sugarcane soils. Agricultural and Forest Meteorology, 150(6), 748–756. https://doi.org/10.1016/j.agrformet.2009.06.018

FAO [Food and Agricultural Organization of the United Nations], (2009). OECD-FAO Agricultural Outlook 2011–2030.

FAO, (2017). Agroforestry in rice-production landscapes in Southeast Asia: a practical manual. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific World Agroforestry Centre (ICRAF)

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., & R. Van Dorland, , (2007). In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., & H.L. Miller, (Eds.), 2007: Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

Frenzel, P., Bosse, U., & P. H. Janssen, (1999). Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in the rooted soil. Soil Biology and Biochemistry 31:421-430.

Gutierrez, J., Yoon, S., & P. Joo, (2013). Effect of rice cultivar on CH4 emissions and productivity in Korean paddy soil. Field Crops Research, 146, 16–24. https://doi.org/10.1016/j.fcr.2013.03.003

Gogoi, N., Baruah K. K., & P. K. Gupta, (2008). Selection of rice genotypes for lower methane emission. Agronomy for

Sustainable Development, 28:181-186.

Hadi, A., Inubushi, K., & K. Yagi, (2010). Effect of water management on greenhouse gas emissions and microbial properties of paddy soils in Japan and Indonesia. Paddy and Water Environment, 8(4), 319–324. https://doi.org/10.1007/s10333-010-0210-x

Haque, M. M., Kim, S. Y., Ali, M. A., & P. J. Kim, (2014). Contribution of greenhouse gas emissions during cropping and fallow seasons on total global warming potential in mono-rice paddy soils. Plant and Soil, 387(1–2), 251–264. https://doi.org/10.1007/s11104-014-2287-2

Huang, Y., Jiao, Y., Zong, L., Zheng, X., Sass, R. L., & F. M. Fisher, (2002). Quantitative dependence of methane emission on soil properties. Nutrient Cycling in Agroecosystems, 64(1-2), 157-167. doi:10.1023/A:102113233026

Humphreys, J., Brye, K. R., Rector, C., & E. E. Gbur, (2019). Methane emissions from rice across a soil organic matter gradient in Alfisols of Arkansas, USA. Geoderma Regional, 16, e00200. https://doi.org/10.1016/j.geodrs.2018.e00200

Husin, Y. A, (1994). Methane Flux from Indonesia Wetland Rice: The Effects of Water Management and Rice Variety (PhD Thesis) Bogor Agricultural University. (In Indonesian with english abstract).

Holzapfel-Pschorn, A., Conrad, R., & W. Seiler, (1986). Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil, 92, 223-233

Horwath, W. R., (2011). Greenhouse gas emissions from rice cropping systems. Understanding Greenhouse Gas Emissions From Agricultural Management, (3), 67–89. https://doi.org/10.1021/bk-2011-1072.ch005

IPCC, (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

Ishfaq, M., Farooq, M., Zulfiqar, U., Hussain, S., Akbar, N., Nawaz, A., & S. Ahmad, (2020). Alternate wetting and drying : A water-saving and ecofriendly rice production system. Agricultural Water Management, 241(February), 106363. https://doi.org/10.1016/j.agwat.2020.106363

Islam, S. M. M., Kanta, Y., Chandra, J., Jahan, S., Singh, U., Kumar, S., … & M. A. Saleque, (2018). Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation : Fate of nitrogen and grain yield. Agricultural Water Management, 196, 144–153. https://doi.org/10.1016/j.agwat.2017.11.002

Jain, N., Pathak, H., Mitra, S., & A. Bhatia, (2004). Emission of methane from rice fields - A review. Journal of Scientific and Industrial Research, 63(2), 101–115.

Janz, B., Weller, S., Kraus, D., Racela, H. S., Wassmann, R., Butterbach-Bahl, K., & R. Kiese, (2019). Greenhouse gas footprint of diversifying rice cropping systems: Impacts of water regime and organic amendments. Agriculture, Ecosystems and Environment, 270–271(October 2018), 41–54. https://doi.org/10.1016/j.agee.2018.10.011

Lal, R., (2004). Soil carbon sequestration impacts on global climate change and food security. Science (80-.) 304, 1623–1627. https://doi.org/10.1126/science.1097396.

Lal, R., (2003): Global potential of soil carbon sequestration to mitigate the greenhouse effect. CRC Crit. Rev. Plant Sci. 22, 151–184. https://doi.org/10.1080/713610854.

Le Mer, J.& P. Roger, (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37: 25–50.

Li, B., Ti, C., & X. Yan, (2020). Estimating rice paddy areas in China using multi-temporal cloud-free normalized difference vegetation index ( NDVI ) imagery based on change detection. Pedosphere: An International Journal, 30(6), 734–746. https://doi.org/10.1016/S1002-0160(17)60405-3

Lindau, C. W., Bollich, P. K., Delaune, R. D., Patrick, W. H., & V. J. Law, (1991). Effect of Urea Fertilizer and Environmental Factors on CH4 Emissions from a Louisiana, USA Rice Field. Plant Soil, 136 (2), 195–203. https://doi.org/10.1007/BF02150050.

Lindau, C.W., (1994). Methane emissions from Louisiana rice fields amended with nitrogen fertilizers. Soil Biol. Biochem. 26, 353–359.

Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C., & K. J. van Groenigen, (2012). Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Research, 135, 10-21. Elsevier B.V. https://doi.org/10.1016/j.fcr.2012.06.007

Lumbanraja, J., Ghani Nugroho, S., Suprapto, H., Sunyoto, Ardjasa, W. S., Kimura, M., & M. Kimura, (1997). Methane emission from an indonesian rainfed paddy field. Soil Science and Plant Nutrition, 43(2), 479–482. https://doi.org/10.1080/00380768.1997.10414774

Luo, G.J., Kiese, R., Wolf, B., & K. Butterbach-Bahl, (2013). Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences 10: 3205–3219

Ma, K., Qiu, Q. F., & Y. H. Lu, (2010). Microbial mechanism for rice variety control on methane emission from rice field soil. Global Change Biology 16:3085-3095

MacLeod, M., Moran, D., Eory, V., Rees, R. M., Barnes, A., Topp, C. F. E., & A. Moxey, (2010). Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK. Agricultural Systems, 103(4), 198–209. https://doi.org/10.1016/j.agsy.2010.01.002

Minami, K., (1995). The effect of nitrogen fertilizer use and other practices on methane emission from flooded rice. Fertil Res 40: 71–84.

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., & L. Winowiecki, (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002

Mitra, S., Wassmann, R., Jain, M. C., & H. Pathak, (2002). Properties of rice soils affecting methane production potentials: 2. Differences in topsoil and subsoil. Nutrient Cycling in Agroecosystems, 64(1–2), 183–191. https://doi.org/10.1023/A:1021175404418

MOA, (2016). Agricultural Statistics. Ministry of Agriculture, Government of Indonesia

MoEF, (2017). Indonesia’s Third National Communication to the UNFCCC. Ministry of Environment and Forests, Government of Indonesia.

Neubauer, S.C., Toledo-Duran, G.E., & D. Emerson, (2007). Returning to their roots: iron-oxidizing bacteria enhance short-term plaque formation in the wetland-plant rhizosphere. Geomicrobiol J, 24: 65–73.

Neue, H.U., & R.L. Sass, (1994). Trace gas emission from rice fields. Environmental of Science Research 48: 119 – 147.

Nouchi, I., Mariko, S., & K. Aoki, (1990). Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiology 94:59-66.

Nouchi I., & S. Mariko, (1993). Mechanism of methane transport by rice plants. In: Oremland R.S. (eds) Biogeochemistry of Global Change, 336-352. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2812-8_18

Nugroho, S. G., Lumbanraja, J., Suprapto, H., Sunyata, Ardjasa, W. S., Haraguchi, H., & M. Kimura, (1994). Methane emission from an indonesian paddy field subjected to several fertilizer treatments. Soil Science and Plant Nutrition, 40(2), 275–281. https://doi.org/10.1080/00380768.1994.10413301

Nugroho, S. G., Sunyoto, S., Lumbanraja, J., Suprapto, H., Ardjasa, W. S., & M. Kimura, (1997). Effect of rice variety on methane emission from an indonesian paddy field. Soil Science and Plant

Nutrition, 43(4), 799–809. https://doi.org/10.1080/00380768.1997.10414646

Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & S. Erasmi, (2016). Greenhouse gas emissions from soils—A review. Chemie Der Erde - Geochemistry, 76(3), 327–352. https://doi.org/10.1016/j.chemer.2016.04.002

Oo, A. Z., Sudo, S., Inubushi, K., Chellappan, U., Yamamoto, A., Ono, K., & R. Venkatachalam, (2018). Mitigation potential and yield-scaled global warming potential of early-season drainage from a rice paddy in Tamil Nadu, India. Agronomy 2018, 8(10), 202. https://doi.org/10.3390/AGRONOMY8100202

Pathak, H., Li, C., & R. Wassman,(2005): Grenhouse gas emissions from Indian Rice fields: calibration and upscaling using the DNDC model. Biogeosciences, 2: 113-123.

Pavelka, M., Acosta, M., Kiese, R., Altimir, N., Brümmer, C., Crill, P., … & A. Lohila, (2018). Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems. International Agrophysics, 32, 569–587. https://doi.org/10.1515/intag-2017-0045

Peyron, M., Bertora, C., Pelissetti, S., Said-Pullicino, D., Celi, L., Miniotti, E., & D. Sacco, (2016). Greenhouse gas emissions as affected by different water management practices in temperate rice paddies. Agriculture, Ecosystems and Environment, 232, 17–28. https://doi.org/10.1016/j.agee.2016.07.021

Ro, S., Seanjan, P., & T. Tulaphitak, (2011). Sulfate content influencing methane production and emission from incubated soil and rice-planted soil in Northeast Thailand. Soil Science & Plant Nutrition, 57: 833–842

Sass, R. L., Fisher, F. M., Wang, Y. B., Turner, F. T., & M. F. Jund, (1992). Methane emission from rice fields: The effect of floodwater management. Global Biogeochemical Cycles, 6(3), 249-262. doi:10.1029/92GB01674

Schutz, H., Holzapfel-Pschorrn, A., Conrad, R., Rennenberg, H., & W. Seiler, (1989). A3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. Journal of Geophysical Research 94, 16405–16416.

Setyanto, P., Makarim, A., Fauziah, C. I., & A. Bidin, (2002). Soil controlling factors of methane production from flooded rice fields in Pati district, Central Java. Indonesian Journal of Agricultural Science, 3(1), 1–11. https://doi.org/10.21082/ijas.v3n1.2002.1-11

Setyanto, P., Makarim, A. K., Fagi, A. M., Wassmann, R., & L. V. Buendia, (2000). Crop management affecting methane emissions from irrigated and rainfed rice in Central Java (Indonesia). Nutrient Cycling in Agroecosystems, 58(1–3), 85–93. https://doi.org/10.1023/A:1009834300790

Setyanto, P., & R. Kartikawati, (2011). Integrated rice crop management for low emittance of methane. Indonesian Jornal of Agriculture Science, 4 (1), 8-16.

Setyanto, P., Pramono, A., Adriany, T. A., Susilawati, H. L., Tokida, T., Padre, A. T., & K. Minamikawa, (2018). Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss. Soil Science and Plant Nutrition, 64(1), 23–30. https://doi.org/10.1080/00380768.2017.1409600

Shakoor, A., Shakoor, S., Rehman, A., Ashraf, F., Abdullah, M., Muhammad, S., … & M. Ahsan, (2021). Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils d A global meta- analysis. Journal of Cleaner Production, 278, 124019. https://doi.org/10.1016/j.jclepro.2020.124019

Shin, J., Jang, E., Park, S., Ravindran, B., & Woong, S. (2019). Agro-environmental impacts , carbon sequestration and pro fi t analysis of blended biochar pellet application in the paddy soil-water system. Journal of Environmental Management, 244(August 2018), 92–98. https://doi.org/10.1016/j.jenvman.2019.04.099

Signor, D., & C. E. P. Cerri, (2013). Nitrous oxide emissions in agricultural soils: a review. Pesquisa Agropecuária Tropical, 43(3), 322–338. https://doi.org/10.1590/S1983-40632013000300014

Smartt, A. D., Brye, K. R., & R. J. Norman, (2016). Methane emissions from rice production in the United States — A Review of controlling factors and summary of research. In Intech open (Vol. 2, p. 64). https://doi.org/10.5772/32009

Smith P., M. Bustamante, H. Ahammad, H. Clark, H. Dong, E.A. Elsiddig, H. Haberl, R. Harper, J. House, M. Jafari, O. Masera, C. Mbow, N.H. Ravindranath, C.W. Rice, C. Robledo Abad, A. Romanovskaya, F. Sperling, and F. Tubiello, 2014: Agriculture, Forestry and Other Land Use (AFOLU). In: Climate Change (2014). Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., & A. Rey, (2018). Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, 69(1), 10–20. https://doi.org/10.1111/ejss.12539

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., & S.Towprayoon, (2007).Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment, 118, 6-28. https://doi.org/10.1016/j.agee.2006.06.006

Song, T., Das, D., Hu, Q., Yang, F., & J. Zhang, (2021). Alternate wetting and drying irrigation and phosphorus rates affect grain yield and quality and heavy metal accumulation in rice. Science of the Total Environment, 752, 141862. https://doi.org/10.1016/j.scitotenv.2020.141862

Song, T., Das, D., Yang, F., Chen, M., Tian, Y., & C. Cheng, (2020). Genome-wide transcriptome analysis of roots in two rice varieties in response to alternate wetting and drying irrigation. The Crop Journal, 8(4), 586–601. https://doi.org/10.1016/j.cj.2020.01.007

Suarma, U., Hizbaron, D. R., S, S., & E. Nurjani, (2018). Participatory Implementation within Climate Change Related Policies in Urbanized Area of Indonesia. Indomesian Journal of Geography, 50(2), 121–132. https://doi.org/http://dx.doi.org/10.22146/ijg.36262

Subadiyasa, N., Arya, N., & M. Kimura, (1997). Methane emissions from paddy fields in bali island, indonesia. Soil Science and Plant Nutrition, 43(2), 387–394. https://doi.org/10.1080/00380768.1997.10414762

Suckall, N., Stringer, L. C., & E. L. Tompkins, (2015). Presenting Triple-Wins ? Assessing Projects That Deliver Adaptation , Mitigation and Development Co-Benefits in Rural Sub-Saharan Africa. AMBIO, 34–41. https://doi.org/10.1007/s13280-014-0520-0.

Sun, Y., Xia, G., He, Z., Wu, Q., Zheng, J., Li, Y., … & D. Chi, (2019). Zeolite amendment coupled with alternate wetting and drying to reduce nitrogen loss and enhance rice production. Field Crops Research, 235(March), 95–103. https://doi.org/10.1016/j.fcr.2019.03.004

Susilawati, H. L., Setyanto, P., Makarim, A. K., Ariani, M., Ito, K., & K. Inubushi, (2015). Effects of steel slag applications on CH4, N2O and the yields of Indonesian rice fields: a case study during two consecutive rice-growing seasons at two sites. Soil Science and Plant Nutrition, 61(4), 704–718. https://doi.org/10.1080/00380768.2015.1041861

Tirol-Padre, A., K. Minamikawa, T. Tokida, R. Wassmann, & K. Yagi, (2018). Site-specific feasibility of alternate wetting and drying as a greenhouse gas mitigation option in irrigated rice fields in Southeast Asia: A Synthesis. Soil Science and Plant Nutrition 64: 2–13. doi:10.1080/ 00380768.2017.1409602

Thangarajan, R., Bolan, N. S., Tian, G., Naidu, R., & A

Kunhikrishnan, (2013). Role of organic amendment application on greenhouse gas emission from soil. Science of the Total Environment, 465(August 2014), 72–96. https://doi.org/10.1016/j.scitotenv.2013.01.031

Tubiello, F.N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., & P. Smith, (2013). The Faostat database of greenhouse gas emissions from agriculture. Environmental Research Letter 8, 1–11.

Vermeulen, S.J., Aggarwal, P.K., Ainslie, A., Angelone, C., Campbell, B.M., Challinor, A.J., Hansen, J.W., Ingram, J.S.I., Jarvis, A., Kristjanson, P., others., (2012). Options for support to agriculture and food security under climate change. Environmental Science and Policy 15, 136e144

Wang, Z.P., Lindau, C.W., Delaune, R.D., & W.H. Patrick Jr., (1993). Methane emission and entrapment in flooded rice soils as affected by soil properties. Biology and Fertility of Soils 16, 163–168. http://doi.org/10.1007/BF00361401.

Wang, B., Xu, Y., Wang, Z., Li, Z., Guo, Y., Shao, K., & Z. Chen, (1999). Methane emissions from ricefields as affected by organic amendment, water regime, crop establishment, and rice cultivar. Environ. Monit. Assess. 57, 213–228.Wang, C., Lai, D. Y. F., Sardans, J., Wang, W., Zeng, C., & J. Peñuelas, (2017). Factors related with CH4 and N2O emissions from a paddy field: Clues for management implications. PLoS ONE, 12(1), 1–23. https://doi.org/10.1371/journal.pone.0169254

Wang, J., H. Akiyama, K. Yagi, & X. Yan, (2018). Controlling Variables and Emission Factors of Methane from Global Rice Fields. Atmospheric Chemistry and Physics 18: 10419–10431. doi:10.5194/acp-18-10419-2018.

Watanabe, A., & M. Kimura, (1999). Influence of chemical properties of soils on methane emission from rice paddies. Communication Soil Science & Plant Analysis, 30, 2449–2463. 10.1080/00103629909370386

Wihardjaka, A., (2007). Methane emissions from sime rice cultivar in rainfed rice field. Jurnal Biologi Indonesia, 4 (3): 143-152. In Indonesian

Wihardjaka, A., (2010). Nitrous oxide emission from rainfed rice field amended with rice straw and nitrification inhibitor. Jurnal Biologi Indonesia, 6(2), 211–224. In Indonesian

Wihardjaka, A., & E. S. Harsanti, (2011). Methane production potential from several soil types in Central Java. Ecolab, 5 (November), 68–78. In Indonesian

Wihardjaka, A., & Poniman, (2015). Contribution of sulfur to rice productivity and atmospheric greenhouse gases in Lowland. Journal Pangan, 9–17. In Indonesian

Wihardjaka, & Sarwoto, (2015). Greenhouse gases emission and grain yield from several rice varieties in rainfed rice field, Central Java. Ecolab, 9(1), 9–16. In Indonesian

Xie, B., Zheng, X., Zhou, Z., Gu, J., Zhu, B., & X. Chen, (2009). Effects of nitrogen fertilizer on CH4 emission from rice fields: multi-site field observations. Plant Soil 326, 393–401.

Yagi, K., & K. Minami, (1990). Effect of organic matter application on methane emission from some japanese paddy fields. Soil Science and Plant Nutrition, 36(4), 599-610. doi:10.1080/00380768.1990.10416797

Yagi, K., Sriphirom, P., Cha-un, N., Chidthaisong, A., & B. Damen, (2019). Potential and promisingness of technical options for mitigating greenhouse gas emissions from rice cultivation in Southeast Asian countries. Soil Science and Plant Nutrition, 00(00), 1–13. https://doi.org/10.1080/00380768.2019.1683890

Yan, X., Du, L., Shi, S., & G. Xing, (2000). Nitrous oxide emission from wetland rice soil as affected by the application of controlled-availability fertilizers and mid-season aeration. Biol. Fertil. Soils., 32, 60-66.

Yan, X., Yagi, K., Akiyama, H., & H. Akimoto, (2005). Statistical analysis of themajor variables controllingmethane emission fromrice fields. Global Change Biology 11:1131-1141

Yang, S., & H. Chang, (2000). Effect of green manure amendment and flooding on methane emission from paddy fields. Chemosphere - Global Change Science, 3(1), 41-49. doi:10.1016/S1465-9972(00)00032-5

Yuan, J., Yuan, Y., Zhu, Y., & L. Cao, (2018). Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil. Science of the Total Environment, 627, 770–781. https://doi.org/10.1016/j.scitotenv.2018.01.233

Zhao, X., Pu, C., Ma, S. T., Liu, S. L., Xue, J. F., Wang, X., & H. L. Zhang, (2019). Management-induced greenhouse gases emission mitigation in global rice production. Science of the Total Environment, 649, 1299–1306. https://doi.org/10.1016/j.scitotenv.2018.08.392



DOI: https://doi.org/10.22146/ijg.55681

Article Metrics

Abstract views : 7116 | views : 4672

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Miranti Ariani, Eko Haryono, Eko Hanudin

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC