Validation of Sea Surface Temperature from GCOM-C Satellite Using iQuam Datasets and MUR-SST in Indonesian Waters

https://doi.org/10.22146/ijg.53790

Bambang Sukresno(1*), Dinarika Jatisworo(2), Rizki Hanintyo(3)

(1) Institute for Marine Research and Observation
(2) Institute for Marine Research and Observation
(3) Institute for Marine Research and Observation
(*) Corresponding Author

Abstract


Sea surface temperature (SST) is an important variable in oceanography. One of the SST data can be obtained from the Global Observation Mission-Climate (GCOM-C) satellite. Therefore, this data needs to be validated before being applied in various fields. This study aimed to validate SST data from the GCOM-C satellite in the Indonesian Seas. Validation was performed using the data of Multi-sensor Ultra-high Resolution sea surface temperature (MUR-SST) and in situ sea surface temperature Quality Monitor (iQuam). The data used are the daily GCOM-C SST dataset from January to December 2018, as well as the daily dataset from MUR-SST and iQuam in the same period. The validation process was carried out using the three-way error analysis method. The results showed that the accuracy of the GCOM-C SST was 0.37oC.


Keywords


Validation; Sea surface temperature (SST); GCOM-C; iQuam; MUR-SST



References

Chin, T.M., Vazquez, J. and Armstrong, E., (2013). Algorithm theoretical basis document: a multi-scale, high-resolution analysis of global sea surface temperature, vers. 1.3. Jet Propulsion Laboratory, Pasadena.

 

Corlett, G. K., Barton, I. J., Donlon, C. J., Edwards, M. C., Good, S. A., Horrocks, L. A.,  & Noyes, E. J. (2006). The accuracy of SST retrievals from AATSR: An initial assessment through geophysical validation against in situ radiometers, buoys and other SST data sets. Advances in Space Research37(4), 764-769.

 

Gentemann, C.L., (2014). Three-way validation of MODIS and AMSR‐E sea surface temperatures. Journal of Geophysical Research: Oceans119(4), pp.2583-2598.

 

Hausfather, Z., Cowtan, K., Clarke, D.C., Jacobs, P., Richardson, M. and Rohde, R., (2017). Assessing recent warming using instrumentally homogeneous sea surface temperature records. Science advances3(1), p.e1601207.

 

Hori, M., Murakami, H., Miyazaki, R., Honda, Y., Nasahara, K., Kajiwara, K., Nakajima, T.Y., Irie, H., Toratani, M., Hirawake, T. and Aoki, T., (2018). GCOM-C Data Validation Plan for Land, Atmosphere, Ocean, and Cryosphere. Transactions Of The Japan Society For Aeronautical And Space Sciences, Aerospace Technology Japan, 16(3), Pp.218-223.

Huang, B., Thorne, P.W., Banzon, V.F., Boyer, T., Chepurin, G., Lawrimore, J.H., Menne, M.J., Smith, T.M., Vose, R.S. and Zhang, H.M., (2017). Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. Journal of Climate30(20), pp.8179-8205.

 

Imaoka, K., Kachi, M., Fujii, H., Murakami, H., Hori, M., Ono, A., Igarashi, T., Nakagawa, K., Oki, T., Honda, Y. and Shimoda, H., (2010). Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change. Proceedings of the IEEE98(5), pp.717-734.

 

Isa, N.S., Akhir, M.F., Kok, P.H., Daud, N.R., Khalil, I. and Roseli, N.H., 2020. Spatial and temporal variability of sea surface temperature during El-Niño Southern Oscillation and Indian Ocean Dipole in the Strait of Malacca and Andaman Sea. Regional Studies in Marine Science39, p.101402.

 

JAXA . (2018). GCOM-C “SHIKISAI”  Data Users Handbook First Edition.

 

Kurihara, Y., (2018). ATBD for GCOM-C/SGLI Sea Surface Temperature (SST).

 

Nur’utami, M.N. and Hidayat, R., (2016). Influences of IOD and ENSO to Indonesian rainfall variability: role of atmosphere-ocean interaction in the Indo-Pacific sector. Procedia Environmental Sciences33, pp.196-203.

 

O’Carroll, A.G., Eyre, J.R. and Saunders, R.W., (2008). Three-way error analysis between AATSR, AMSR-E, and in situ sea surface temperature observations. Journal of Atmospheric and Oceanic Technology25(7), pp.1197-1207.

 

Setiawan, R.Y., Wirasatriya, A., Hernawan, U., Leung, S. and Iskandar, I., 2020. Spatio-temporal variability of surface chlorophyll-a in the Halmahera Sea and its relation to ENSO and the Indian Ocean Dipole. International Journal of Remote Sensing41(1), pp.284-299.

 

Setiawan, R.Y., Setyobudi, E., Wirasatriya, A., Muttaqin, A.S. and Maslukah, L., 2019. The Influence of Seasonal and Interannual Variability on Surface Chlorophyll-a Off the Western Lesser Sunda Islands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing12(11), pp.4191-4197.

 

Sukresno, B., Hanintyo, R., Kusuma, D.W., Jatisworo, D. and Murdimanto, A., (2018). Three-way error analysis of sea surface temperature (SST) between HIMAWARI-8, buoy, and mur SST in SAVU Sea. International Journal of Remote Sensing and Earth Sciences (IJReSES)15(1), pp.25-36.

 

Wirasatriya, A., Hosoda, K., Setiawan, J.D. and Susanto, R.D., 2020. Variability of Diurnal Sea Surface Temperature during Short Term and High SST Event in the Western Equatorial Pacific as Revealed by Satellite Data. Remote Sensing12(19), p.3230.

 

Xu, F. and Ignatov, A., (2016). Error characterization in iQuam SSTs using triple collocations with satellite measurements. Geophysical Research Letters43(20), pp.10-826.

 

Xu, F. and Ignatov, A., (2014). In situ SST quality monitor (i Quam). Journal of Atmospheric and Oceanic Technology31(1), pp.164-180.



DOI: https://doi.org/10.22146/ijg.53790

Article Metrics

Abstract views : 153

Refbacks





Copyright (c) 2021 Bambang Sukresno

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 30/E/KPT/2018, Vol 50 No 1 the Year 2018 - Vol 54 No 2 the Year 2022

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC