Assessment of Gap-Filling Interpolation Methods for Identifying Mangrove Trends at Segara Anakan in 2015 by using Landsat 8 OLI and Proba-V

https://doi.org/10.22146/ijg.50556

Sanjiwana Arjasakusuma(1*), Abimanyu Putra Pratama(2), Intan Lestari(3)

(1) Departemnt of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Indonesia
(2) Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Indonesia
(3) Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Indonesia
(*) Corresponding Author

Abstract


The existence and services of mangrove ecosystems in Segara Anakan are threatened by changes in land use on land and global warming, which requires proper and intensive monitoring. The monitoring of mangrove and its trend over large areas can be done using multi-temporal remote sensing technology. However, remote sensing data is often contaminated by cloud cover, and its corresponding shadow resulted in missing data. This study aims to assess the performance of the existed gap-filling techniques, such as, linear, spline, stineman,  data interpolation Empirical Orthogonal Function (dineof) and spatial downscaling strategy employing the Proba-V imagery in 100 m, when being used for estimating the missing data and depicting the trend in NDVI from Landsat 8 OLI by using Mann-Kendall test. Our result suggested that EOF-based interpolation gave better prediction results and more accurate in predicting longer missing data. Linear interpolation, on the other hand, was accurate to predict shorter missing data. Overall, all interpolation results can reconstruct 64 (spline) to 72 % (dineof) of missing data in NDVI with the RMSE of 0.10 (dineof) – 0.13 (spline). A consistent decreasing trend was also found from the four interpolation methods, which showed the consistency of the interpolated values when used for deriving trends with similar patterns of overall decreasing trend and magnitude of changes of -0.0095 to -0.0099 (NDVI unit) over the mangrove areas in 2015. The result demonstrated the potential ability of gap-filling methods for simulating the value of missing data and for deriving trends.


Keywords


Interpolation; Spatial-Downscaling NDVI; Mann-Kendall; Sens-slope

Full Text:

PDF


References

Alongi, D. M. (2002). Present state and future of the world's mangrove forests. Environmental conservation, 29(3), 331-349.

Alvera Azcarate, A., Barth, A., Sirjacobs, D., Lenartz, F., & Beckers, J.-M. (2011). Data Interpolating Empirical Orthogonal Functions (DINEOF): a tool for geophysical data analyses. Mediterranean Marine Science, 12(3), 5-11.

Appelhans, T., Detsch, F., & Nauss, T. (2015). Remote: empirical orthogonal teleconnections in R. J. Stat. Softw, 65(10), 1-9.

Ardli, E. R., & Wolff, M. (2009). Land use and land cover change affecting habitat distribution in the Segara Anakan lagoon, Java, Indonesia. Regional Environmental Change, 9(4), 235.

Arjasakusuma, S., Yamaguchi, Y., Nakaji, T., Kosugi, Y., Shamsuddin, S.-A., & Lion, M. (2018). Assessment of values and trends in coarse spatial resolution NDVI datasets in Southeast Asia landscapes. European Journal of Remote Sensing, 51(1), 863-877.

Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., . . . Wu, Z. (2017). A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 104-120.

Chen, C.-F., Son, N.-T., Chang, N.-B., Chen, C.-R., Chang, L.-Y., Valdez, M., . . . Aceituno, J. (2013). Multi-decadal mangrove forest change detection and prediction in Honduras, Central America, with Landsat imagery and a Markov chain model. Remote Sensing, 5(12), 6408-6426.

Filipponi, F., Valentini, E., Nguyen Xuan, A., Guerra, C., Wolf, F., Andrzejak, M., & Taramelli, A. (2018). Global MODIS Fraction of Green Vegetation Cover for Monitoring Abrupt and Gradual Vegetation Changes. Remote Sensing, 10(4), 653.

Gilman, E. L., Ellison, J., Duke, N. C., & Field, C. (2008). Threats to mangroves from climate change and adaptation options: a review. Aquatic botany, 89(2), 237-250.

Guide, P. (2018). Landsat 8 surface reflectance code (LaSRC) product. Availabe online: https://landsat. usgs. gov/sites/default/files/documents/lasrc_product_guide. pdf (accessed on 26 December 2018).

Hinrichs, S., Nordhaus, I., & Geist, S. J. (2009). Status, diversity and distribution patterns of mangrove vegetation in the Segara Anakan lagoon, Java, Indonesia. Regional Environmental Change, 9(4), 275.

Holtermann, P., Burchard, H., & Jennerjahn, T. (2009). Hydrodynamics of the Segara Anakan lagoon. Regional Environmental Change, 9(4), 245-258.

Jennerjahn, T. C., & Yuwono, E. (2009). Segara Anakan, Java, Indonesia, a mangrove-fringed coastal lagoon affected by human activities: Springer.

Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., & Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data sets. Atmospheric Environment, 38(18), 2895-2907.

Long, J. B., & Giri, C. (2011). Mapping the Philippines’ mangrove forests using Landsat imagery. Sensors, 11(3), 2972-2981.

Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors, 7(11), 2636-2651.

McLeod, A. (2011). Kendall-package: Kendall correlation and trend tests. R package version, 2.

Miller-Ihli, N., O'Haver, T., & Harnly, J. (1984). Calibration and curve fitting for extended range AAS. Spectrochimica Acta Part B: Atomic Spectroscopy, 39(12), 1603-1614.

Nordhaus, I., Hadipudjana, F. A., Janssen, R., & Pamungkas, J. (2009). Spatio-temporal variation of macrobenthic communities in the mangrove-fringed Segara Anakan lagoon, Indonesia, affected by anthropogenic activities. Regional Environmental Change, 9(4), 291-313.

Pham, T. D., & Yoshino, K. (2015). Mangrove mapping and change detection using multi-temporal Landsat imagery in Hai Phong city, Vietnam. Paper presented at the International symposium on cartography in internet and ubiquitous environments.

Pohlert, T. (2017). Trend: non-parametric trend tests and change-point detection. 2016. R package version 0.2. 0.

Rouse Jr, J. W., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS.

Roy, D. P., Wulder, M., Loveland, T. R., Woodcock, C., Allen, R., Anderson, M., . . . Kennedy, R. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154-172.

Son, N.-T., Chen, C.-F., Chang, N.-B., Chen, C.-R., Chang, L.-Y., & Thanh, B.-X. (2014). Mangrove mapping and change detection in Ca Mau Peninsula, Vietnam, using Landsat data and object-based image analysis. IEEE journal of selected topics in applied earth observations and remote sensing, 8(2), 503-510.

Stineman, R. W. (1980). A consistently well-behaved method of interpolation. Creative Computing.

Taddeo, S., Dronova, I., & Depsky, N. (2019). Spectral vegetation indices of wetland greenness: Responses to vegetation structure, composition, and spatial distribution. Remote Sensing of Environment, 234, 111467. doi: https://doi.org/10.1016/j.rse.2019.111467

Valiela, I., Bowen, J. L., & York, J. K. (2001). Mangrove Forests: One of the World's Threatened Major Tropical Environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. AIBS Bulletin, 51(10), 807-815.

Weiss, D. J., Atkinson, P. M., Bhatt, S., Mappin, B., Hay, S. I., & Gething, P. W. (2014). An effective approach for gap-filling continental scale remotely sensed time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 106-118.

Yuwono, E., Jennerjahn, T., Nordhaus, I., Riyanto, E. A., Sastranegara, M. H., & Pribadi, R. (2007). Ecological status of Segara Anakan, Indonesia: a mangrove-fringed lagoon affected by human activities. Asian Journal of Water, Environment and Pollution, 4(1), 61-70.



DOI: https://doi.org/10.22146/ijg.50556

Article Metrics

Abstract views : 676 | views : 755

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Sanjiwana Arjasakusuma, Abimanyu Putra Pratama, Intan Lestari

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 30/E/KPT/2018, Vol 50 No 1 the Year 2018 - Vol 54 No 2 the Year 2022

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC