Detection of Potential Fishing Zones of Bigeye Tuna (Thunnus Obesus) at Profundity of 155 m in the Eastern Indian Ocean

https://doi.org/10.22146/ijg.43708

Achmad Fachruddin-Syah(1*), Jonson Lumban Gaol(2), Mukti Zainuddin(3), Nadela Rista Apriliya(4), Dessy Berlianty(5), Dendy Mahabror(6)

(1) University of Trunojoyo Madura, Bangkalan, Madura, Indonesia
(2) IPB University, Bogor, Jawa Barat, Indonesia.
(3) University of Hasanuddin, Makassar, Indonesia
(4) University of Trunojoyo Madura, Bangkalan, Madura, Indonesia
(5) Institute for Marine Research and Observation, Jembrana, Bali, Indonesia
(6) Institute for Marine Research and Observation, Jembrana, Bali, Indonesia
(*) Corresponding Author

Abstract


Remotely sensed data and habitat model approach were employed to evaluate the present of oceanographic aspect in the Bigeye tuna's potential fishing zone (PFZ) at a profundity of 155 m. Vessel monitoring system was employed to acquire the angling vessels for Bigeye tuna from January through December, 2015-2016. Daily data of sub-surface temperature (Sub_ST), sub-surface chlorophyll-a (Sub_SC), and sub-surface salinity (Sub_SS) were downloaded from INDESO Project website. Vessel monitoring system and environmental data were employed for maximum entropy (maxent) model development. The model predictive achievement was then estimated applying the area under the curve (AUC) value. Maxent model results (AUC>0.745) exhibited its probable to understand the Bigeye tuna's spatial dispersion on the specific sub-surface. In addition, the results also showed Sub_ST (43,1%) was the most affective aspect in the Bigeye tuna dispersion, pursued by Sub_SC (35,2%) and Sub_SS (21,6%).

Keywords


Bigeye tuna; profundity of 155 m; eastern Indian Ocean; maximum entropy model; potential fishing zone

Full Text:

PDF


References

Alheit, J., and Hagen, E. (1997). Long-term climate forcing of European herring and sardine populations. Fisheries Oceanography, 6,130–139.

 

Baylift, Wh., Moreno, Jil., and Majkowski, J. (2004). Management of tuna fishing capacity: conservation and socio economics. Proceeding of FAO Fisheries, P. Madrid.

 

Barata, A., Bahtiar, A., and Hartati, H. (2011). Pengaruh perbedaan umpan dan waktu setting rawai tuna terhadap hasil tangkapan tuna di Samudera Hindia. Jurnal Penelitian Perikanan Indonesia, 17(2), 133–138.

 

Brill, R.W., Bigelow, K.A., Musyl, M.K., Fritshes, K A., and Warrant, E. J. (2005). Bigeye tuna (Thunnus obesus) behaviour and physiology and their relevance to stock assessments and fishery biology. Col. Vol. Sci. Pap. ICCAT. 57 (2),142–161.

 

Briand, K., Brett, M., and Patrick. L. (2011). A study on the variability of albacore (Thunnus alalunga) longline catch rates in the southwest Pacific Ocean. Fish. Oceanogr. 20:517–529.

 

Bray N.A., Hautala S., Chong J., and Pariwono J. (1996). Large-scale sea level, thermocline, and wind variations in the Indonesian throughflow region. Journal of Geophysical Research: Oceans (1978-2012), 101 (C5), 12239–12254. doi: http://dx.doi.org/ 10.1029/96JC00080/.

 

Faizah, R. (2010). Biologi reproduksi ikan tuna mata besar (Thunnus obeusus) di Perairan Samudera Hindia. Tesis. Institut Pertanian Bogor.

Gaol, J.L., Leben, R. R., Vignudelli, S., Mahapatra, K., Okada, Y., Nababan, B., Mei-Ling, M., Amri, K., Arhatin, R. E., and Syahdan, M. (2015). Variability of satellite-derived sea surface height anomaly, and its relationship with Bigeye tuna (Thunnus obesus) catch in the Eastern Indian Ocean. European Journal of Remote Sensing, 48 (1), 465–477, doi: 10.5721/EuJRS20154826.

Gerritsen, H., and Lordan, C. (2011). Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution. ICES Journal of Marine Science, 68, 245–252.

 

Gordon, A., Sprintall, J., Aken, V.H.M., Susanto, R.D., Wijffels, S., Molcard, R., Ffield, A., Pranowo, W., and Wirasantosa. S. (2010).  The Indonesian throughflow during 2004–2006 as observed by the INSTANT program.  Dynamic of Atmosphere and Ocean, 50,115–128.

 

Gordon, A.L. (2005).  Oceanography of the Indonesian seas and their throughflow. Oceanography, 18(4), 13–26

Godø, O.R., Samuelsen, A., Macaulay G.J., Patel, R., Hjøllo, S.S., Horne, J., Kaartvedt, J., and Johannessen J.A. (2012).Mesoscale eddies are oases for higher trophic marine life. PLoS ONE 7, (1): e30161. doi: http://dx.doi.org/10.1371/journal.pone.0030161.

 

Hanamoto, E. (1987). Effect of oceanographic environment on Bigeye tuna distribution.  Bulletin of the Japanese Society of Scientific Fisheris Oceanography, 3, 203–216.

Hartoko, A. (2009). Ocean observation on SST variability and subsurface sea water temperature of the North Papua the Fate of El_Nino 1997 & 2007 and La Nina. Field measurement and triton buoy data. Journal of Coastal Development, 13: 28–35

 

Hartoko, A. (2010). Spatial distribution of Thunnus.sp, vertical and horizontal sub-surface multilayer temperature profiles of in-situ agro float data in Indian Ocean. Journal of Coastal Development, 14, 61–74

 

Hirzel, A.H., and Guisan, A. (2002) Which is the optimal sampling strategy for habitat suitability modelling. Ecological Modelling, 157, 331–341.

 

Howell, E.A., Hawn, D.R., and Polovina. J.J. (2010). Spatio temporal variability in Bigeye tuna (Thunnus obesus) dive behavior in the central North Pacific Ocean. Progress in Oceanography, 86, 81–93.

 

Howell, E.A., and Kobayashi, D.R. (2006). El Niño effects in the Palmyra Atoll region: oceanographic changes and Bigeye tuna (Thunnus obesus) catch rate variability. Fish. Oceanogr. 15, 477–489.

 

Holland, K.N., Brill, R.W., Chang, R.K.C., Sibert, J.R., and Fournier, D.A. (1992). Physiological and behavioural thermoregulation in Bigeye tuna (Thunnus obesus). Nature, 358, 410–412.

 

Hsu, A.C.T. (2010).North Atlantic mesoscale eddy detection and marine species distribution. Master Thesis, Duke University, Durham, 28 pp.

 

IOTC. (2014). Status of the Indian Ocean bigeye tuna (BET: Thunnus obesus) resource. [online] The Indian Ocean Tuna Commission (IOTC). (http://www.iotc.org/sites/ default/files/documents/2014/12/IOTC-2014-SC17- ES02 E_-_Bigeye_tuna.pdf), [diakses: 1 Maret 2016]

 

Lehodey, P., Bertignac, M., Hampton, J., Lewis, A., and Picaut, J. (1997). El Niño southern oscillation and tuna in the western Pacific. Nature, 389, 715–718.

 

Lehodey, P., Chai, F., and Hampton, J. (2003). Modelling climate-related variability of tuna populations from a coupled ocean–biogeochemical-populations dynamics model. Fisheries Oceanography, 12(4/5), 483–494.

 

Lehodey, P., Senina, I., Sibert, J., Bopp, L., Calmettes, B., Hampton, J., and Murtugudde, R. (2010). Preliminary forecast of Pacific Bigeye tuna population trends under the A2 IPCC scenario. Prog. Oceanogr. 86:302–315.

 

McGillicuddy D.J.,and Robinson A.R. (1997).Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research Papers, 44(8), 1427-1450. doi: http://dx.doi.org/10.1016/S0967-0637(97)00024-1.

 

Miller, K.A. (2007).  Climate variability and tropical tuna: management challenges for highly migratory fish stocks.  Marine Policy, 31, 56–70.

Molcard, R., Fieux, M., and Syamsudin, F. (2001). The throughflow within Ombai Strait. Deep Sea Research, 48,1237–1253.

 

Mohri, M., Hanamoto, E., and Takeuchi. S. (1996).Optimum water temperatures for Bigeye tuna (Thunnus obesus) in the Indian ocean as seen from tuna longline catches. Bulletin of the Japanese Society of Scientific Fisheries (Japan), 62, 761–764.

 

Mohri, M., and Nishida, T. (1999). Distribution of Bigeye tuna (Thunnus obesus) and its relationship to the environmental conditions in the Indian Ocean based on the Japanese longline fisheries information.  IOTC Proceedings, 2, 221–230.

 

Murtugudde, R.G., Signorini, S.R., Christian, J.R., Busalacchi, A.J., McClain, C.R., and Picaut, J. (1999). Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997–1998. Journal of Geophysical Research, 104, 18351–18366.

 

Nootmorn, P. (2004). Reproductive biology of Bigeye tuna in The Eastern Indian Ocean.Proceeding of IOTC., Victoria, Seychelles, July, 7-1 – 7-5.

 

Novianto, D.,and Susilo, E. (2016). Role of sub surface temperature, salinity and chlorophyll to albacore tuna abundance in Indian Ocean. Indonesian Fisheries Research Journal, 22 (1), 17–26.

Pepperell, J. (2010).  Fishes of the open ocean: a natural history and illustrated guide, 272 p.  Univ. Chicago Press, Chicago.

 

Phillips, S.J., Anderson, R.P., and Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.

 

Polovina, J.J., Howell, E., Kobayashi, D.R., and Seki, M.P. (2001). The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Progress in Oceanography, 49, 469–483.

 

Polovina, J.J., Balazs, G.H., Howell, E.A., Parker, D.M., Seki, M.P., and Dutton, P.H. (2004). Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean. Fisheries Oceanography, 13, 36–51.

 

Qu, T., Du, Y., Strachan, J., Meyers, G., Slingo, J. (2005). Sea surface temperature and its variabilty in the Indonesian region. Journal Oceanography, 18(4), 50-61.

 

Radosavljevic, A., and Anderson, R.P. (2014). Making better MAXENT models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography, 41, 629-643.

 

Saitoh, S.I., Mugo, R., Radiarta, I.N., Asaga, S., Takahashi, F., Hirawake, T., Ishikawa, Y., Awaji, T., In, T., and Shima, S. (2011). Some operational uses of satellite remote sensing and marine GIS for sustainable fisheries and aquaculture.ICES Journal of Marine Science, doi:10.1093/icesjms/fsq190.

 

Susanto, R. D., and Marra, J. (2005). Effect of the 1997/98 El nino on chlorophyll-a variability along the southern coast of Java and Sumatera. Oceanography, 18(4), 124 – 127.

 

Sund, P.N., Blackburn, M.,and Williams, F. (1981).Tunas and their environment in the Pacific Ocean: a review. Oceanography marine biology annual review, 19, 443–512.

 

Song, L., Zhou, J., Zhou, Y., Nishida, T., Jiang, W., and Wang, J. (2009). Environmental preferences of Bigeye tuna, Thunnus obesus, in the Indian Ocean: an application to a longline fishery. Environmental Biology of Fishes, 85, 153–171.

 

Song, L., and Zhou, Y. (2010). Developing an integrated habitat index for bigeye tuna (Thunnus obesus) in the Indian Ocean based on longline fisheries data. Fisheries Research, 105, 63–74.

 

Southward, A.J., Boalch, G.T., and Maddock, L. (1988). Fluctuations in the herring and pilchard fisheries of Devon and Cornwall linked to change in climate since the 16th century. Journal of  Marine Biology, Assoc UK, 68, 423–445.

 

Sprintall, J., Wijffels, S.E., Molcard, R., and Jaya, I. (2009). Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004–2006. Journal of Geophysical Research (C Oceans), 114, 1–19.

 

Sprintall, J., Wijffels, S.E., Molcard, R., and Jaya, I. (2010). Direct evidence of the South Java Current system in Ombai Strait. Dynamical Atmospheric Oceans, 50, 140–156.

 

Sukresno, B., Hartoko, A., Sulistyo, B., and Subiyanto. (2015). Empirical cumulative distribution function (ECDF) analysis of Thunnus.sp using ARGO float sub-surface multilayer temperature data in Indian Ocean south of Java. Procedia Environmental Sciences, 23, 358 – 367.

 

Syamsudin, M. L., Saitoh, S.I., Hirawake, T., Bachri, S., and Harto, A. B. (2013). Effects of El Niño -Southern Oscillation events on catches of Bigeye tuna (Thunnusobesus) in the eastern Indian Ocean off Java. Fishery Bulletin, 111 (2), 175–188. doi: http://dx.doi. org/10.7755/FB.111.2.5.

 

Syamsudin, F., Kaneko, A., and Haidvogel, D. B. (2004).  Numerical and observational estimates of Indian Ocean Kelvin wave intrusion into Lombok Strait. Geophysical Research Letter, 31, L24307.  doi:10.1029/2004GL02 1227.

 

Syah, A.F., Gaol, J.L., Zainuddin, M., Apriliya, N.R., Berlianty, D., Mahabror, D. (2019). Habitat model development of Bigeye tuna (Thunnus obesus) during southeast monsoon in the eastern Indian Ocean using satellite remotely sensed data. International Conference on Life Sciences and Technology, 276.

 

Valavanis, D.V., Pierce, G.J., Zuur, A.F., Palialexis, A., Saveliev, A., Katara, I., Wang, J. (2008). Modelling of essential fish habitat based on remote sensing spatial analysis and GIS. Hydrobiologia, 612, 5-20.

 

Yu, L. (2003). Variability of the depth of the 20 C isotherm along 6 N in the Bay of Bengal: Its respon to remote and local forcing and its relation to satellite SSH variability. Deep Sea Reseacrh Part II: Topical studies in Oceanography, 50(12), 2285 – 2304.

 

Zhou, L., Murtugudde, R., and Jochum, M. (2008). Dynamics of the intra seasonal oscillations in the Indian Ocean South Equatorial Current. Journal of Physical Oceanography, 38, 121–132.



DOI: https://doi.org/10.22146/ijg.43708

Article Metrics

Abstract views : 456 | views : 467

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Achmad Fachruddin-Syah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 30/E/KPT/2018, Vol 50 No 1 the Year 2018 - Vol 54 No 2 the Year 2022

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC