Assessing the Potential of LAPAN-A3 Data for Landuse/landcover Mapping

https://doi.org/10.22146/ijg.31449

Zylshal Zylshal(1*), Rachmad Wirawan(2), Dony Kushardono(3)

(1) Indonesian National Institute of Aeronautics and Space (LAPAN)
(2) Universitas Negeri Malang
(3) Indonesian National Institute of Aeronautics and Space (LAPAN)
(*) Corresponding Author

Abstract


LAPAN-A3 / LAPAN-IPB is the third generation of micro-satellite developed by Indonesian National Institute of Aeronautics and Space (LAPAN). The satellite carries a multispectral push-broom sensor that can record the earth's surface at the visible and near-infrared spectrum. Being launched in June 2016, there has no been many publications related to the use of LAPAN-A3 multispectral data for landuse/landcover (LULC) mapping. This paper aims to provide information regarding the use of LAPAN-A3 data for the LULC extraction maximum likelihood algorithm as well as neural network and then evaluate the results. The LAPAN-A3 image was geometrically corrected by using Landsat-8 OLI image as reference data. Three test areas with a size of 1200x945 pixels are then selected for pixel-based classification with the two aforementioned algorithms. For comparison, both LAPAN-A3 and Landsat-8 data were classified for 3 test areas. Accuracy assessment was performed on both datasets using manually interpreted SPOT-6 Pansharpened image as reference data. Preliminary results showed that LAPAN-A3 were able to extract  10 different LULC classes, comprises of built-up area, forest, rivers, fishponds, shrubs, wetland forests, rice fields, sea, agricultural land, and bare soil. The overall accuracy of LAPAN-A3 data is generally lower than Landsat-8, which ranges from 49.76% to 71.74%. These results illustrate the potential of LAPAN-A3 data to derive LULC information. The lack of necessary parameters to perform radiometric correction and blurring effect are several issues that need to be solved to improve the accuracy LULC. 

Keywords


LAPAN-A3;Landsat-8;LULC;Maximum Likelihood;Neural Network

Full Text:

PDF


References

Bailly, J. S., Arnaud, M., & Puech, C. (2007). Boosting: a classification method for remote sensing. International Journal of Remote Sensing, 28(7), 1687–1710. https://doi.org/10.1080/01431160500469985 Bensebaa, K., Banon, G. J. F., & Fonseca, L. M. G. (2012). Spatial resolution estimation of CBERS-1 and CBERS-2 CCD cameras. International Journal of Remote Sensing, 33(2), 604–629. https://doi.org/10.1080/01431161.2010.545840 Bensebaa, K., Banon, G. J. F., Fonseca, L. M. G., & Erthal, G. J. (2008). On-orbit Spatial Resolution Estimation of CBERS-2 Imaging System Using Ideal Edge Target. In E. Damiani, K. Yétongnon, P. Schelkens, A. Dipanda, L. Legrand, & R. Chbeir (Eds.), Signal Processing for Image Enhancement and Multimedia Processing (pp. 37–48). Boston, MA: Springer US. https://doi.org/10.1007/978-0-387-72500-0_4 Bischof, H., Pinz, A. J., & Schneiden, W. (1992). Multispectral Classification of Landsat-Images Using Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 30(3), 482–490. https://doi.org/10.1109/36.142926 BSN. (2014). Landcover classification - Part 1: Coarse and Medium scale. Badan Standardisasi Nasional. (in Indonesian) Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measrurement, XX(1), 37–46. Congalton, R. G., & Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRC Press/Taylor & Francis. Cracknell, a P. (1998). Synergy in remote sensing - what’ s in a pixel ? International Journal of Remote Sensing, 19(11), 2025–2047. https://doi.org/10.1080/014311698214848 Dai, X. (1998). The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Transactions on Geoscience and Remote Sensing, 36(5 PART 1), 1566–1577. https://doi.org/10.1109/36.718860 Danoedoro, P. (2012). Introduction to Digital Remote Sensing. Yogyakarta: Penerbit ANDI. (In Indonesian) Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water bodies’ mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the swir band. Remote Sensing, 8(4). https://doi.org/10.3390/rs8040354 Foody, G., McCulloch, M., & Yates, W. (1995). Classification of remotely sensed data by an artificial neural network: issues related to training data characteristics. Photogrammetric Engineering & Remote Sensing, 61(4), 391–401. Retrieved from http://cat.inist.fr/?aModele=afficheN&cpsidt=3496683 Gandhi, V. (2004). Image Classification Based on Textural Features using Artificial Neural Network ( ANN ). Journal of The Institution of Engineers (India), 84, 72–77. Hakim, P. R., Hasbi, W., & Syafrudin, A. H. (2014). ADCS requirements of Lapan-A3 satellite based on image geometry analysis. Proceeding - ICARES 2014: 2014 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, 142–146. https://doi.org/10.1109/ICARES.2014.7024383 Hakim, P. R., & Permala, R. (2017). Analysis of LAPAN-IPB image lossless compression using differential pulse code modulation and huffman coding. In IOP Conference Series: Earth and Environmental Science (Vol. 54, p. 12096). IOP Publishing. https://doi.org/10.1088/1755-1315/54/1/012096 Hakim, P. R., Syafrudin, A. H., & Utama, S. (2017). Band Co-registration Distortion Modeling of LAPAN-A3 Multispectral Imager Based on Satellite Attitude. The 4th International Symposium on LISAT 2017. Bogor, Indonesia. Han, N., Wu, J., Tahmassebi, A. R. S., Xu, H. W., & Wang, K. (2011). NDVI-based lacunarity texture for improving identification of torreya using object-oriented method. Agricultural Sciences in China, 10(9), 1431–1444. https://doi.org/10.1016/S1671-2927(11)60136-3 Hasbi, W., & Suhermanto. (2013). Development of LAPAN-A3 / IPB Satellite an Experimental Remote Sensing Microsatellite. In 34th Asian Conference on Remote Sensing 2013, ACRS 2013 (p. 8). Bali. Retrieved from http://a-a-r-s.org/acrs/index.php/acrs/acrs-overview/proceedings-1?view=publication&task=show&id=1365 Hepner, G. F., Logan, T., Pitter, N., & Bryant, N. (1990). Artificial Neural Network Classification Using a Minimal Training Set : Comparison to Conventional Supervised Classification. Photogrammetric Engineering & Remote Sensing, 56(4), 469–473. Jensen, J. R. (2005). Introductory Digital Image Processing: A Remote Sensing Perspective (3rd Ed.). Pearson Education. Junior, J. M., & Tommaselli, A. M. G. (2013). Exterior orientation of CBERS-2B imagery using multi-feature control and orbital data. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 219–225. https://doi.org/10.1016/j.isprsjprs.2013.02.018 Kanellopoulos, I., Wilkinson, G. G., & Megier, J. (1993). Integration of neural network and statistical image classification for land cover mapping. In Proceedings of IGARSS ’93 - IEEE International Geoscience and Remote Sensing Symposium (pp. 511–513). Tokyo, Japan: IEEE. https://doi.org/10.1109/IGARSS.1993.322597 Kavzoglu, T., & Mather, P. M. (2003). The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 24(23), 4907–4938. https://doi.org/10.1080/0143116031000114851 Knipling, E. B. (1970). Physical and Physiological Basis for the Reflectance of Visible and Near Infrared Radiation from Vegetation. Remote Sensing of Environment, 1, 155–159. Lee, D. H., Yang, J. Y., Seo, D. C., Song, J. H., Chung, J. H., & Lim, H. S. (2011). Image restoration of the asymmetric point spread function of a high-resolution remote sensing satellite with time-delayed integration. Advances in Space Research, 47(4), 690–701. https://doi.org/DOI 10.1016/j.asr.2010.10.006 Li, G., Li, X., Li, G., Wen, W., Wang, H., Chen, L., … Deng, F. (2013). Comparison of spectral characteristics between China HJ1-CCD and landsat 5 TM imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(1), 139–148. https://doi.org/10.1109/JSTARS.2012.2206800 Liu, X. H., Skidmore, A. K., & Van Oosten, H. (2002). Integration of classification methods for improvement of land-cover map accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 56(4), 257–268. https://doi.org/10.1016/S0924-2716(02)00061-8 McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714 Nugroho, J. T., Zylshal, Z., & Kushardono, D. (2017). LAPAN-A3 Satellite Data Analysis for Land Cover Classification (Case Study: Toba Lake Area, North Sumatra). Paper presented at Seminar Nasional Penginderaan Jauh. Depok, Jawa Barat. Parker, J. a, Kenyon, R. V, & Troxel, D. E. (1983). Comparison of interpolation methods for image resampling. IEEE Transactions on Medical Imaging, 2(1), 31–39. https://doi.org/10.1109/42.7784 PUSTEKSAT. (2016). LAPAN-A3 Satellite Technical Specification. Retrieved January 16, 2017, from http://pusteksat.lapan.go.id/index.php/subblog/pages/2014/39/Spesisikasi-Teknis-Satelit-LAPAN-A3 Richards, J. A. (1993). Remote Sensing Digital Image Analysis. Berlin/Heidelberg: Springer-Verlag. https://doi.org/10.1007/3-540-29711-1 Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learining Internal Representations by Error Propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Vol. 1, pp. 318–362). MIT Press. https://doi.org/10.1016/B978-1-4832-1446-7.50035-2 Schowengerdt, R. A. (1983). Techniques for image processing and classification in remote sensing. Academic Press. Retrieved from http://www.sciencedirect.com/science/book/9780126289800 Setiawan, Y., Prasetyo, L. B., Pawitan, H., Wijayanto, A. K., Permatasari, P. A., Syartinilia, & Liyantono. (2017). An Evaluation of the Use of Lapan-A3/IPB Spectral Features to Identify Agricultural Land Use Types in Java, Indonesia. In The 4th International Symposium on LISAT 2017. Bogor, Indonesia. Tahir, A. M., Hakim, P. R., Syafruddin, A. H., Cagak, J., Km, S., & Indonesia, B. (2016). Image-Focusing Quality Improvement on Lapan-A3 Satellite Multispectral Imager. Jurnal Teknologi Dirgantara, 14(1), 37–50. Retrieved from http://www.jurnal.lapan.go.id/index.php/jurnal_tekgan/article/view/2566 Tucker, C. J., & Sellers, P. J. (1986). Satellite remote sensing of primary production. International Journal of Remote Sensing, 7(11), 1395–1416. https://doi.org/10.1080/01431168608948944 USGS. (2012). Landsat Data Continuity Mission ( Ldcm ) Mission Data Data Format Control Book ( Dfcb ), (October). Veraverbeke, S., Gitas, I., Katagis, T., Polychronaki, A., Somers, B., & Goossens, R. (2012). Assessing post-fire vegetation recovery using red-near infrared vegetation indices: Accounting for background and vegetation variability. ISPRS Journal of Photogrammetry and Remote Sensing, 68(1), 28–39. https://doi.org/10.1016/j.isprsjprs.2011.12.007 Wahid, D. A., & Akiyama, T. (2007). Possibilities of landuse / landcover classification using ALOS AVNIR-2 in Takayama. Journal of the Japan Society of Photogrammetry and Remote Sensing, 46(5), 56–67. https://doi.org/http://doi.org/10.4287/jsprs.46.5_56 Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment, 117, 34–49. https://doi.org/10.1016/j.rse.2011.02.030 Yoshioka, H., Huete, A. R., & Miura, T. (2000). Derivation of vegetation isoline equations in red-NIR reflectance space. IEEE Transactions on Geoscience and Remote Sensing, 38(2 I), 838–848. https://doi.org/10.1109/36.842012 Zylshal, Z., Sari, N. M., Nugroho, J. T., & Kushardono, D. (2017). Comparison of Spectral Characteristic between LAPAN-A3 and Sentinel-2A. Paper presented at The 5th Geoinformation Science Symposium. Yogyakarta, Indonesia.



DOI: https://doi.org/10.22146/ijg.31449

Article Metrics

Abstract views : 1910 | views : 1347

Refbacks





Copyright (c) 2018 Indonesian Journal of Geography

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 30/E/KPT/2018, Vol 50 No 1 the Year 2018 - Vol 54 No 2 the Year 2022

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC