Penalaan Mandiri Full State Feedback dengan LQR dan JST Pada Kendali Quadrotor
Faisal Fajri Rahani(1*), Tri Kuntoro Priyambodo(2)
(1) Program Pascasarjana Ilmu Komputer, DIKE, FMIPA UGM, Yogyakarta
(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author
Abstract
Quadrotor is one type of unmanned aerial vehicle that has the ability to vertical takeoff and landing. In this research, a system designed to stabilize quadrotor during flight condition by maintaining at angle of roll, pitch, yaw, and x, y, and z axis position using LQR full state feedback with artificial neural network (ANN).
The LQR full state feedback method uses 12 states with each K constant being tuned with ANN. This research implements ANN method to change feedback constant at angle of roll, pitch, and yaw and x, y, and z axis. The artificial neural network method uses 12 input layers, 12 hidden layers, and 1 output layer.
Testing with ANN improved the rise time to ± 2.18 seconds at the roll angle, ± 1.23 seconds at the pitch angle, and ± 0.31 seconds at the yaw angle. Improved settling time value up to ± 2.41 seconds at roll angle, ± 1.23 seconds at pitch angle, and ± 1.07 seconds at yaw angle. Improved steady state eror value of ± 0.61% at roll angle, ± 4.88% at pitch angle, and ± 0.82% at the yaw angle.
Keywords
Full Text:
PDFReferences
[1] H. C. T. E. Fernando, a. T. a De Silva, M. D. C. De Zoysa, K. a D. C. Dilshan, and S. R. Munasinghe, “Modelling, simulation and implementation of a quadrotor UAV,” 2013 IEEE 8th Int. Conf. Ind. Inf. Syst. ICIIS 2013 - Conf. Proc., pp. 207–212, 2013.
[2] D. Shatat and T. A. Tutunji, “UAV quadrotor implementation: A case study,” in 2014 IEEE 11th International Multi-Conference on Systems, Signals and Devices, SSD 2014, 2014.
[3] L. R. García Carrillo, A. E. Dzul López, R. Lozano, and C. Pégard, Quad Rotorcraft Control, vol. 1. London: Springer London, 2013.
[4] T. K. Priyambodo, A. Dharmawan, O. A. Dhewa, and N. A. S. Putro, “Optimizing control based on fine tune PID using ant colony logic for vertical moving control of UAV system,” AIP Conf. Proc., vol. 1755, no. 2016, 2016.
[5] E. Lavretsky and K. Wise, Robust and Adaptive Control. London: springer, 2013.
[6] A. Dharmawan and I. F. Arismawan, “Sistem Kendali Penerbangan Quadrotor pada Keadaan Melayang dengan Metode LQR dan Kalman Filter,” IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 7, no. 1, p. 49, 2017.
[7] C. Sun, T. Lu, and K. Yuan, “Balance control of two-wheeled self-balancing robot based on Linear Quadratic Regulator and Neural Network,” 2013 Fourth Int. Conf. Intell. Control Inf. Process., vol. 1, pp. 862–867, 2013.
[8] P. Gautam, “Optimal control of Inverted Pendulum system using ADALINE artificial neural network with LQR,” 2016 Int. Conf. Recent Adv. Innov. Eng., pp. 1–6, 2016.
[9] S. Kusumadewi and S. Hartati, Neuro-Fuzzy: Integrasi Sistem Fuzzy & Jaringan Syaraf, 2nd ed. Yogyakarta: Graha Ilmu, 2010.
[10] K. Ogata, Modern Control Engineering, 5th ed., vol. 17. pearson, 2010.
[11] A. B. Zakaria and A. Dharmawan, “Sistem Kendali Penghindar Rintangan Pada Quadrotor Menggunakan Konsep Linear Quadratic,” Indones. J. Electron. Instrum. Syst., vol. 7, no. 2, pp. 219–230, 2017.
DOI: https://doi.org/10.22146/ijeis.37212
Article Metrics
Abstract views : 3872 | views : 2597Refbacks
- There are currently no refbacks.
Copyright (c) 2019 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1