Isolation and Characterization of Mouse Specificity Protein 6 Promoter

Ivan Arie Wahyudi(1*), Taigo Horiguchi(2), Keiko Miyoshi(3), Taro Muto(4), Trianna Wahyu Utami(5), Hiroko Hagita(6), Takafumi Noma(7)

(1) Universitas Gadjah Mada, Yogyakarta, Indonesia
(5) Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author


Specificity protein 6 (SP6) is a member of the SP/Krüppel-like transcription factor family and plays key roles in tooth development. To study its biological roles, it is important to understand the spatiotemporal regulation of Sp6 gene expression. For this purpose, we first identified two separate 5' ends of the Sp6 cDNA by 5' RACE analysis using mouse mandibular RNA. Next, we isolated mouse genomic DNA fragments covering the Sp6 gene including two putative mouse Sp6 promoter regions and generated a series of luciferase reporter constructs. We confirmed the activity of both promoters by a luciferase assay and found strong second promoter activity in dental epithelial cells. Unexpectedly, we also detected potential third promoter activity in the intron 2 of the Sp6 gene. Last, we also found that bone morphogenetic protein and wingless signals could enhance Sp6 promoter activity in dental epithelial cells, suggesting the regulatory roles of two cytokines in Sp6 gene expression during tooth development. Our findings may shed new light on the regulatory mechanisms of Sp6 gene expression and provide a possible linkage between cytokine regulation of Sp6 expression and inductive epithelial and mesenchymal interactions.


Gene expression; luciferase assay; promoter activity; Sp6

Full Text:



Mass R and Bei M. 1997. The genetic control of early tooth development. Crit. Rev. Oral Biol. Med. 8 (1) :4-39.

Jernvall J and Thesleff I. 2000. Reiterative signaling and patterning during mammalian tooth morphogenesis, Mech. Dev. 92 (1):19-29.

Thesleff I. 2003. Epithelial-mesenchymal signaling regulating tooth morphogenesis, J. Cell Sci. 116, Pt. 9: 1647-8.

Suske G, Bruford E, Philipsen S. 2005. Mammalian SP/KLF transcription factors: bring in the family. Genomics 85 (5): 551-6.

Jimenez-Rojo L, Ibarretxe G, Aurrekoetxea M, de-Vega S, Nakamura T, Yamada Y, Unda F. 2010. Epiprofin/ Sp6: A new player in the regulation of tooth development. Histol. Histopathol., 25, in press.

Nakamura T, de-Vega S, Fukumoto S, Jimenez L, Unda F, Yamada Y. 2008. Transcriptional factor epiprofin is essential for tooth morphogenesis by regulating cell fate and tooth number. J. Biol. Chem. 283(8): 4825-33.

Hertveldt V, Louryan S, van Reeth T, Dreze T, van Vooren P, Szpirer J, Szpirer C. 2008. The development of several organs and appendages is impaired in mice lacking Sp6 Dev. Dyn. 237 (4):


Ruspita I, Miyoshi K, Muto T, Abe K, Horiguchi T, Noma T. 2008. Sp6 downregulation of follistatin gene expression in ameloblasts. J. Med. Invest. 55 (1-2):87-98.

Nakamura T, de-Vega S, Fukumoto S, Vilaxa A, Fukumoto S, Yamada KM, Yamada Y. 2004. The Krüppel-like factor epiprofin is expressed by epithelium of developing teeth, hair follicles, and

limb buds and promotes cell proliferation. J. Biol. Chem. 279 (1):626-34.

Hertveldt V, De Mees C, Scohy S, Van Vooren P, Szpirer J, Szpirer C. 2007. The Sp6 locus uses several promoters and generates sense and antisense transcripts. Biochimie. 89 (11):1381-7.

Abe K, Miyoshi K, Muto T, Ruspita I, Horiguchi T, Nagata T, Noma T.2007. Establishment and characterization of rat dental epithelial derived ameloblast-lineage clones. J. Biosci. Bioeng.

(5): 479-85.

Kawano S, Morotomi T, Toyono T, Nakamura N, Uchida T, Ohishi M, Toyoshima K, Harada H. 2002. Establishment of dental epithelial cell line (HAT-7) and the cell differentiation dependent on

Notch signaling pathway. Connect. Tissue Res. 43 (2-3): 409-12.

Kawase T, Orikasa M, Suzuki A. 1990. A clonal prostaglandin-responsive cell line (RDP 4-1) derived from rat dental pulp. Bone Miner. 11 (2): 163-75.

Macville M, Schrock E, Padilla-Nash H, Keck C, Ghadimi BM, Zimonjic D, Popescu N, Ried T. 1999. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res. 59 (1): 141-50.

Ostlund RE, Seemayer R, Gupta S, Kimmel R, Ostlund EL, Sherman WR. 1996. A stereospecific myo-inositol/D-chiro-inositol transporter in HepG2 liver cells. Identification with D-chiro-[3-

H] inositol. J. Biol. Chem. 27(17): 10073-8.

Shaw G, Morse S, Ararat M, Graham FL. 2002. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J. 16(8): 869-71.

Feng XH and Derynck R. 1996. Ligandindependent activation of transforming growth factor (TGF) beta signaling pathways by

heteromeric cytoplasmic domains of TGF-beta receptors. J. Biol. Chem. 271 (22): 13123-9.

Ishitani T, Tsuji JN, Nagai S, Nishita M, Meneghini M, Barker N, Waterman M, Bowerman N, Clevers H, Shibuya H, Matsumoto K. 1999. The TAK1-NLKMAPK-related pathway antagonize signaling

between β-catenin and transcription factor TCF. Nature 399 (6738): 798-802.

Dean A. 2006. On a chromosome far, far away: LCRs and gene expression. Trends Genet. 22 (1): 38-45.

Golonzhka O, Metzger D, Bornert JM, Bay BK, Gross MK, Kioussi C, Leid M. 2009. Ctip2/Bcl11b controls ameloblast formation during

mammalian odontogenesis. Proc. Natl. Acad. Sci. USA. 106 (11): 4278-83.

Byrne BJ, Davis MS, Yamaguchi J, Bergsma DJ, Subramanian KN. 1983. Definition of the simian virus 40 early promoter region and demonstration of a host range bias in the enhancement effect of the simian virus 40 72- base-pair repeat. Proc. Natl. Acad. Sci. USA. 80 (3):721-5.

Liu F, Chu EY, Watt B, Zhang Y, Gallant MN, Andl T, Yang SH, Lu MM, Piccolo S, Schmidt-Ullrich R, Taketo MM, Morrisey MM, Atit R, Dlugozs AA, Milar SE. 2008. Wnt/β-catenin signaling directs

multiple stages of tooth morphogenesis. Dev. Biol. 313 (1): 210-24.


Article Metrics

Abstract views : 1502 | views : 1276


  • There are currently no refbacks.





website statistics


View My Stats