Improving transient gene expression and agroinfiltration‐based transformation effectiveness in Indonesian orchid Phalaenopsis amabilis (L.) Blume

https://doi.org/10.22146/ijbiotech.80555

Dionysia Heviarie Primasiwi(1), Yekti Asih Purwestri(2), Endang Semiarti(3*)

(1) Biotechnology Study Program, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
(2) Biotechnology Study Program, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia; Faculty of Biology, Universitas Gadjah Mada, Indonesia
(3) Biotechnology Study Program, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia; Faculty of Biology, Universitas Gadjah Mada, Indonesia
(*) Corresponding Author

Abstract


Transient gene expression is an approach used to study transient genes across various species, with infiltration by Agrobacterium tumefaciens (agroinfiltration) being a commonly used method. Agroinfiltration offers a simple and effective means of delivering transgenes into the plant genome. An alternative method for enhancing the quality and productivity of orchids as ornamental plants is genetic modification through agroinfiltration. Although Agrobacterium‐mediated genetic transformation by immersion has been used on the Phalaenopsis amabilis (L.) Blume species of orchid, transformation efficiency using the immersion technique remains relatively low and the method itself is challenging due to its requirement for aseptic handling. The application of agroinfiltration in P. amabilis has not previously been reported. This study investigates the impact of the injection site, acetosyringone concentration, bacterial density (OD600), and injection volume to determine the optimum conditions for agroinfiltration on P. amabilis. The results demonstrated that injection site had a noticeably distinct impact on transformation effectiveness, with the abaxial position of the leaf being the optimal site for Agrobacterium culture suspension injection. While adjustments in acetosyringone concentration, bacterial density (OD600), and injection volume did not significantly affect transformation efficiency, they did influence the peak time of GFP fluorescence. Acetosyringone at a concentration of 200 µM, an OD600 of 1.0 for Agrobacterium culture, and an injection volume of 500 µL effectively accelerated GFP expression duration.

Keywords


Agrobacterium tumefaciens; Agroinfiltration; Green Fluorescent protein; Phalaenopsis amabilis

Full Text:

PDF


References

Baker CJ, Smith J, Rice C. 2020. Apoplast redox metabolism: Effect of acetovanillone (apocynin) and acetosyringone, on their co­oxidation and redox properties. Physiol. Mol. Plant Pathol. 110:101481. doi:10.1016/j.pmpp.2020.101481.

Ben­Amar A, Cobanov P, Buchholz G, Mliki A, Reustle G. 2013. In planta agro­infiltration system for transient gene expression in grapevine (Vitis spp.). Acta Physiol. Plant. 35(11):3147–3156. doi:10.1007/s11738­013­1348­0.

Dewanto HA, Suhandono S. 2016. Transformasi menggunakan Agrobacterium tumefaciens pada tunas daun Kalanchoe mortagei dan Kalanchoe daigremontiana 1 dan 2 [Transformation using Agrobacterium tumefaciens on leaf buds of Kalanchoe mortagei and Kalanchoe daigremontiana 1 and 2]. Chim. Nat. Acta 4(2):97–105. doi:10.24198/cna.v4.n2.10679.

Din Mufti FU, Aman S, Banaras S, Shinwari ZK, Shakeel S. 2015. ACTIN gene identification from selected medicinal plants for their use as internal controls for gene expression studies. Pakistan J. Bot. 47(2):629– 635.

Dwiyani R, Yuswanti H, Sartika Mercuriani I, Semiarti DE. 2016. Transformasi gen pembungaan melalui Agrobacterium tumefaciens secara in vitro pada tanaman anggrek Vanda tricolor [In vitro transformation of flowering genes via Agrobacterium tumefaciens in Vanda tricolor orchid plants]. AGROTROP 6(1):83– 89.

Faizal A, Geelen D. 2012. Agroinfiltration of intact leaves as a method for the transient and stable transformation of saponin producing Maesa lanceolata. Plant Cell Rep. 31(8):1517–1526. doi:10.1007/s00299­ 012­1266­4.

Gnasekaran P, Subramaniam S. 2015. Mapping of the interaction between Agrobacterium tumefaciens and Vanda Kasem’s Delight orchid protocormlike bodies. Indian J. Microbiol. 55(3):285–291. doi:10.1007/s12088­015­0519­7.

Gust AA, Pruitt R, Nürnberger T. 2017. Sensing danger: Key to activating plant immunity. Trends Plant Sci. 22(9):779–791. doi:10.1016/j.tplants.2017.07.005.

Ihsani N, Dwivany FM, Suhandono S. 2023. A simple method of plant sectioning using the agarose embedding technique for screening intracellular green fluorescent protein. Indones. J. Biotechnol. 28(3):153– 157. doi:10.22146/ijbiotech.80853.

Janda M, Lamparová L, Zubíková A, Burketová L, Martinec J, Krčková Z. 2019. Temporary heat stress suppresses PAMP­triggered immunity and resistance to bacteria in Arabidopsis thaliana. Mol. Plant Pathol. 20(7):1005–1012. doi:10.1111/mpp.12799.

Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J. 2015. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol. Adv. 33(6):1024–1042. doi:10.1016/j.biotechadv.2015.03.012.

Kuta DD, Tripathi L. 2005. Agrobacterium­induced hypersensitive necrotic reaction in plant cells: A resistance response against Agrobacterium mediated DNA transfer. African J. Biotechnol. 4(8):752–757.

Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q. 2013. Efficient agroinfiltration of plants for high­level transient expression of recombinant proteins. J. Vis. Exp. (77):50521. doi:10.3791/50521.

Malabadi R, Teixeira da Silva J, Nataraja K. 2008. Green Fluorescent Protein in the genetic transformation of plants. Transgenic Plant J. 2:86–109.

Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13(6):614–629. doi:10.1111/j.1364­3703.2012.00804.x.

Matsuo K, Fukuzawa N, Matsumura T. 2016. A simple agroinfiltration method for transient gene expression in plant leaf discs. J. Biosci. Bioeng. 122(3):351–356. doi:10.1016/j.jbiosc.2016.02.001.

Mba’u YJ, Iriawati, Faizal A. 2018. Transient transformation of potato plant (Solanum tuberosum L.) granola cultivar using syringe agroinfiltration. Agrivita 40(2):313–319. doi:10.17503/agrivita.v40i2.1467.

Mirzaee H, Sharafi A, Hashemi Sohi H. 2016. In vitro regeneration and transient expression of recombinant sesquiterpene cyclase (SQC) in Artemisia annua L. South African J. Bot. 104:225–231. doi:10.1016/j.sajb.2015.10.005.

Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8(19):4321–4325. doi:10.1093/nar/8.19.4321.

Mursyanti E, Purwantoro A, Moeljopawiro S, Semiarti E. 2016. Induction of somatic embryogenesis through overexpression of ATRKD4 genes in Phalaenopsis “Sogo Vivien”. Indones. J. Biotechnol. 20(1):42–53. doi:10.22146/ijbiotech.15276.

Nishimura A, Aichi I, Matsuoka M. 2007. A protocol for Agrobacterium­mediated transformation in rice. Nat. Protoc. 1(6):2796–2802. doi:10.1038/nprot.2006.469.

Noman A, Aqeel M, Lou Y. 2019. PRRs and NBLRRs: From signal perception to activation of plant innate immunity. Int. J. Mol. Sci. 20(8):1882. doi:10.3390/ijms20081882.

Norkunas K, Harding R, Dale J, Dugdale B. 2018. Improving agroinfiltration­based transient gene expression in Nicotiana benthamiana. Plant Methods 14(1):1–14. doi:10.1186/s13007­018­0343­2.

Pinthong R, Sujipuli K, Ratanasut K. 2014. Agroinfiltration for transient gene expression in floral tissues of Dendrobium Sonia ’Earsakul’. J. Agric. Technol. 10(2):459–465.

Semiarti E, Indrianto A, Purwantoro A, Isminingsih S, Suseno N, Ishikawa T, Yoshioka Y, Machida Y, Machida C. 2007. Agrobacterium­mediated transformation of the wild orchid species Phalaenopsis amabilis. Plant Biotechnol. 24(3):265–272. doi:10.5511/plantbiotechnology.24.265.

Semiarti E, Indrianto A, Purwantoro A, Martiwi IN, Feroniasanti YM, Nadifah F, Mercuriana IS, Dwiyani R, Iwakawa H, Yoshioka Y, Machida Y, Machida C. 2010. High­frequency genetic transformation of Phalaenopsis amabilis orchid using tomato extract­enriched medium for the pre­culture of protocorms. J. Hortic. Sci. Biotechnol. 85(3):205–210. doi:10.1080/14620316.2010.11512655.

Sufianto S. 2019. Pola interaksi bakteri endofitik +GFP (Green Fluorescent Protein) dalam jaringan tanaman padi (Oryza sativa l.) [Interaction pattern of endophytic bacteria +GFP (Green Fluorescent Protein) in rice plant tissue (Oryza sativa l.)]. J. Nas. Teknol. Terap. 2(3):255. doi:10.22146/jntt.44954.

Tamaki S, Matsuo S, Hann LW, Yokoi S, Shimamoto K. 2007. Hd3a protein is a mobile flowering signal in rice. Science (80­. ). 316(5827):1033–1036. doi:10.1126/science.1141753.

Tang D, Wang G, Zhou JM. 2017. Receptor kinases in plant­pathogen interactions: More than pattern recognition. Plant Cell 29(4):618–637. doi:10.1105/tpc.16.00891.

Tiwari M, Mishra AK, Chakrabarty D. 2022. Agrobacterium­mediated gene transfer: recent advancements and layered immunity in plants. Planta 256(2):37. doi:10.1007/s00425­022­03951­x.

Vargas­-Guevara C, Vargas-­Segura C, Villalta-Villalobos J, Pereira LF, Gatica­Arias A. 2018. A simple and efficient agroinfiltration method in coffee leaves (Coffea arabica L.): assessment of factors affecting transgene expression. 3 Biotech 8(11):1–10. doi:10.1007/s13205­018­1495­5.

Wroblewski T, Tomczak A, Michelmore R. 2005. Optimization of Agrobacterium­mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol. J. 3(2):259–273. doi:10.1111/j.1467­7652.2005.00123.x.

Yadav SK, Katikala S, Yellisetty V, Kannepalle A, Narayana JL, Maddi V, Mandapaka M, Shanker AK, Bandi V, Bharadwaja KP. 2012. Optimization of Agrobacterium mediated genetic transformation of cotyledonary node explants of Vigna radiata. Springerplus 1(1):1–8. doi:10.1186/2193­1801­1­59.

Yamamoto T, Hoshikawa K, Ezura K, Okazawa R, Fujita S, Takaoka M, Mason HS, Ezura H, Miura K. 2018. Improvement of the transient expression system for production of recombinant proteins in plants. Sci. Rep. 8(1):4755. doi:10.1038/s41598­018­23024­y

Baker CJ, Smith J, Rice C. 2020. Apoplast redox metabolism: Effect of acetovanillone (apocynin) and acetosyringone, on their co­oxidation and redox properties. Physiol. Mol. Plant Pathol. 110:101481. doi:10.1016/j.pmpp.2020.101481.

Ben­Amar A, Cobanov P, Buchholz G, Mliki A, Reustle G. 2013. In planta agro­infiltration system for transient gene expression in grapevine (Vitis spp.). Acta Physiol. Plant. 35(11):3147–3156. doi:10.1007/s11738­013­1348­0.

Dewanto HA, Suhandono S. 2016. Transformasi menggunakan Agrobacterium tumefaciens pada tunas daun Kalanchoe mortagei dan Kalanchoe daigremontiana 1 dan 2 [Transformation using Agrobacterium tumefaciens on leaf buds of Kalanchoe mortagei and Kalanchoe daigremontiana 1 and 2]. Chim. Nat. Acta 4(2):97–105. doi:10.24198/cna.v4.n2.10679.

Din Mufti FU, Aman S, Banaras S, Shinwari ZK, Shakeel S. 2015. ACTIN gene identification from selected medicinal plants for their use as internal controls for gene expression studies. Pakistan J. Bot. 47(2):629– 635.

Dwiyani R, Yuswanti H, Sartika Mercuriani I, Semiarti DE. 2016. Transformasi gen pembungaan melalui Agrobacterium tumefaciens secara in vitro pada tanaman anggrek Vanda tricolor [In vitro transformation of flowering genes via Agrobacterium tumefaciens in Vanda tricolor orchid plants]. AGROTROP 6(1):83– 89.

Faizal A, Geelen D. 2012. Agroinfiltration of intact leaves as a method for the transient and stable transformation of saponin producing Maesa lanceolata. Plant Cell Rep. 31(8):1517–1526. doi:10.1007/s00299­ 012­1266­4.

118



DOI: https://doi.org/10.22146/ijbiotech.80555

Article Metrics

Abstract views : 2365 | views : 1760

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.