Early development of self‐administered COVID‐19 rapid test based on nucleocapsid detection in saliva sample
Siti Soidah(1), Toto Subroto(2), Sari Syahruni(3), Fauzian Giansyah(4), Henry Chandra(5), Dhiya Salsabila(6), Bachti Alisjahbana(7), Nisa Fauziah(8), Hesti Lina Wiraswati(9), Leonardus Wiydatmoko(10), Basti Andriyoko(11), Anita Yuwita(12), Muhammad Yusuf(13*)
(1) Master of Biotechnology Program, School of Postgraduates, Universitas Padjadjaran, Jl. Dipatiukur 35 Bandung, West Java 40132, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung‐Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia; Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2 Bandung, West Java 40132, Indonesia
(3) Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl.Singaperbangsa 2 Bandung, West Java 40132, Indonesia
(4) Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl.Singaperbangsa 2 Bandung, West Java 40132, Indonesia
(5) Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl.Singaperbangsa 2 Bandung, West Java 40132, Indonesia
(6) Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl.Singaperbangsa 2 Bandung, West Java 40132, Indonesia
(7) Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Jl. Pasteur No.38 Bandung, West Java 40161, Indonesia
(8) Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine Universitas Padjadjaran, Jl. Raya Bandung‐Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
(9) Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine Universitas Padjadjaran, Jl. Raya Bandung‐Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
(10) Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Jl. Pasteur No.38 Bandung, West Java 40161, Indonesia
(11) Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Jl. Pasteur No.38 Bandung, West Java 40161, Indonesia
(12) Research and Development Division, PT. Pakar Biomedika, Jl. Rancabentang No.12B Ciumbuleuit, Bandung, West Java 40142, Indonesia
(13) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung‐Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia; Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2 Bandung, West Java 40132, Indonesia
(*) Corresponding Author
Abstract
More than 6,000,000 people have died due to the coronavirus (COVID‐19) pandemic. This disease spread quickly due to its highly contagious nature. The SARS‐CoV‐2 virus that causes the disease can be transmitted through saliva droplets secreted by infected people at a distance of less than 1 m. As a result, saliva has been accepted as an alternative specimen for COVID‐19 detection by the Centers for Disease Control and Prevention (CDC). Furthermore, WHO recommended the use of rapid antigen tests based on lateral flow immunoassay when reverse transcription‐polymerase chain reaction (RT‐PCR) is not available. We developed a saliva‐based rapid antigen test by optimizing the antibody concentration and optimum pH for the conjugation of antibody and gold nanoparticles. We found that the best running buffer formulation consisted of 75 mM sodium phosphate buffer, 1% NaCl, 1% Triton X‐100, 0.5% N‐acetyl‐L‐cysteine, and 0.02% sodium azide. The addition of a mucolytic agent in the buffer can reduce the viscosity of saliva, thus improving sensitivity. The rapid test developed detected the lowest concentration of nucleocapsid protein at 0.1 μg/mL. Our study revealed 100% specificity against negative COVID‐19 saliva and no cross‐reaction with avian influenza virus hemagglutinin.
Keywords
Full Text:
PDFReferences
Azzi L, Baj A, Alberio T, Lualdi M, Veronesi G, Carcano G, Ageno W, Gambarini C, Maffioli L, Saverio SD, Gasperina DD, Genoni AP, Premi E, Donati S, Azzolini C, Grandi AM, Dentali F, Tangianu F, Sessa F, Maurino V, Tettamanti L, Siracusa C, Vigezzi A, Monti E, Iori V, Iovino D, Ietto G, Grossi PA, Tagliabue A, Fasano M. 2020a. Rapid salivary test suitable for a mass screening program to detect SARSCoV2: A diagnostic accuracy study. J. Infect. 81(3):e75–e78. doi:10.1016/j.jinf.2020.06.042.
Azzi L, Carcano G, Gianfagna F, Grossi P, Gasperina DD, Genoni A, Fasano M, Sessa F, Tettamanti L, Carinci F, Maurino V, Rossi A, Tagliabue A, Baj A. 2020b. Saliva is a reliable tool to detect SARSCoV2. J. Infect. 81(1):e45–e50. doi:10.1016/j.jinf.2020.04.005.
Azzi L, Maurino V, Baj A, Dani M, D’Aiuto A, Fasano M, Lualdi M, Sessa F, Alberio T. 2021. Diagnostic salivary tests for SARSCoV2. J. Dent. Res. 100(2):115–123. doi:10.1177/0022034520969670.
Biosciences I. 2017. Guide to Lateral Flow Immunoassays p. 1–15. URL https://fnkprddata.blob.core.windows.net/domestic/.
Byzova NA, Safenkova IV, Slutskaya ES, Zherdev AV, Dzantiev BB. 2017. Less is more: A comparison of antibodygold nanoparticle conjugates of different ratios. Bioconjug. Chem. 28(11):2737–2746. doi:10.1021/acs.bioconjchem.7b00489.
Carlson TL, Lock JY, Carrier RL. 2018. Engineering the Mucus Barrier. Annu. Rev. Biomed. Eng. 20(1):197–220. doi:10.1146/annurevbioeng062117121156.
Crozier A, Rajan S, Buchan I, McKee M. 2021. Put to the test: Use of rapid testing technologies for COVID19. BMJ 372:1–7. doi:10.1136/bmj.n208.
de Puig H, Bosch I, Gehrke L, HamadSchifferli K. 2017. Challenges of the nano–bio inter face in lateral low and dipstick immunoassays. Trends Biotechnol. 35(12):1169–1180. doi:10.1016/j.tibtech.2017.09.001.
Dong J, Carpinone PL, Pyrgiotakis G, Demokritou P, Moudgil BM. 2020. Synthesis of precision gold nanoparticles using Turkevich method. KONA Powder Part. J. 37:224–232. doi:10.14356/kona.2020011.
Dutta NK, Mazumdar K, Gordy JT. 2020. The nucleocapsid protein of SARS–CoV2: A target for vaccine development. J. Virol. 94(13):e00647–20. doi:10.1128/jvi.0064720.
Frenkel ES, Ribbeck K. 2015. Salivary mucins in host defense and disease prevention. J. Oral Microbiol. 7(1):29759. doi:10.3402/jom.v7.29759.
Gasperino D, Baughman T, Hsieh HV, Bell D, Weigl BH. 2018. Improving lateral flow assay performance using computational modeling. Annu. Rev. Anal. Chem. 11(1):219–244. doi:10.1146/annurevanchem061417125737.
Grant BD, Anderson CE, Alonzo LF, Garing SH, Williford JR, Baughman TA, Rivera R, Glukhova VA, Boyle DS, Dewan PK, Weigl BH, Nichols KP. 2021. A SARSCoV2 coronavirus nucleocapsid protein antigendetecting lateral flow assay. PLoS One 16(11):e0258819. doi:10.1371/journal.pone.0258819.
Hermanson GT. 2008. Bioconjugate Techniques. London: Academic Press is an imprint of Elsevier. doi:10.1016/B9780123705013.X0001X.
Koczula KM, Gallotta A. 2016. Lateral flow assays. Essays Biochem. 60(1):111–120. doi:10.1042/EBC20150012.
Kosack CS, Page AL, Klatser PR. 2017. A guide to aid the selection of diagnostic tests. Bull. World Health Organ. 95(9):639–645. doi:10.2471/BLT.16.187468.
Mina MJ, Andersen KG. 2021. COVID19 testing: One size does not fit all. Science 371(6525):126–127. doi:10.1126/science.abe9187.
Mina MJ, Peto TE, GarcíaFiñana M, Semple MG, Buchan IE. 2021. Clarifying the evidence on SARSCoV2 antigen rapid tests in public health responses to COVID19. Lancet 397(10283):1425–1427. doi:10.1016/S01406736(21)004256.
Miyazaki CM, Shimizu FM, Ferreira M. 2017. Surface Plasmon Resonance (SPR) for Sensors and Biosensors. Elsevier Inc. doi:10.1016/B9780323497787/000060.
O’Farrell B. 2009. Evolution in Lateral Flow–Based Immunoassay Systems. New York, USA: Humana Press, a part of Springer Science Business Media. doi:10.1007/9781597452403_1.
Panfilova E. 2021. Development of a prototype lateral flow immunoassay of cortisol in saliva for daily monitoring of stress. Biosensors 11(5):146. doi:10.3390/bios11050146.
Parolo C, SenaTorralba A, Bergua JF, Calucho E, FuentesChust C, Hu L, Rivas L, ÁlvarezDiduk R, Nguyen EP, Cinti S, QuesadaGonzález D, Merkoçi A. 2020. Tutorial: Design and fabrication of nanoparticlebased lateralflow immunoassays. Nat. Protoc. 15(12):3788–3816. doi:10.1038/s415960200357x.
Pfaffe T, CooperWhite J, Beyerlein P, Kostner K, Punyadeera C. 2011. Diagnostic potential of saliva: Current state and future applications. Clin. Chem. 57(5):675–687. doi:10.1373/clinchem.2010.153767.
Ruiz G, Tripathi K, Okyem S, Driskell JD. 2019. pH impacts the orientation of antibody adsorbed onto gold nanoparticles. Bioconjug. Chem. 30(4):1182–1191. doi:10.1021/acs.bioconjchem.9b00123.
To KKW, Tsang OTY, Leung WS, Tam AR, Wu TC, Lung DC, Yip CCY, Cai JP, Chan JMC, Chik TSH, Lau DPL, Choi CYC, Chen LL, Chan WM, Chan KH, Ip JD, Ng ACK, Poon RWS, Luo CT, Cheng VCC, Chan JFW, Hung IFN, Chen Z, Chen H, Yuen KY. 2020a. Supplementary Appendix. Lancet Diabetes Endocrinol. 6736(20):1–7. doi:10.1016/S14733099(20)301961.
To KKW, Tsang OTY, Yip CCY, Chan KH, Wu TC, Chan JMC, Leung WS, Chik TSH, Choi CYC, Kandamby DH, Lung DC, Tam AR, Poon RWS, Fung AYF, Hung IFN, Cheng VCC, Chan JFW, Yuen KY. 2020b. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. 71(15):841–843. doi:10.1093/cid/ciaa149.
Wyllie AL, Fournier J, CasanovasMassana A, Campbell M, Tokuyama M, Vijayakumar P, Geng B, Muenker MC, Moore AJ, Vogels CBF, Petrone ME, Ott IM, Lu P, LuCulligan A, Klein J, Venkataraman A, Earnest R, Simonov M, Datta R, Handoko R, Naushad N, Sewanan LR, Valdez J, White EB, Lapidus S, Kalinich CC, Jiang X, Kim DJ, Kudo E, Linehan M, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takahashi T, Taura M, Weizman OE, Wong P, Yang Y, Bermejo S, Odio C, Omer SB, Cruz CSD, Farhadian S, Martinello RA, Iwasaki A, Grubaugh ND, Ko AI. 2020. Saliva is more sensitive for SARSCoV2 detection in COVID19 patients than nasopharyngeal swabs. medRxiv (2):1–12. doi:10.1101/2020.04.16.20067835.
Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. 2020. High expression of ACE2 receptor of 2019nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 12(1):8. doi:10.1038/s413680200074x.
DOI: https://doi.org/10.22146/ijbiotech.72269
Article Metrics
Abstract views : 2271 | views : 1798Refbacks
- There are currently no refbacks.
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.