New sources of papain: SEM and SDS‐PAGE analysis to determine the natural tenderizer from papaya latex and senesced leaves
Aprilia Indra Kartika(1*), Hapsari Sulistya Kusuma(2), Sri Darmawati(3)
(1) Medical Laboratory Technology, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang, Jl. Kedungmundu Raya No. 18 Semarang City, Central Java 50273, Indonesia
(2) Nutritional Science, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang, Jl. Kedungmundu Raya No. 18 Semarang City, Central Java 50273, Indonesia
(3) Master of Medical Laboratory Science, Universitas Muhammadiyah Semarang, Jl. Kedungmundu Raya No. 18, Semarang City, Central Java 50273, Indonesia
(*) Corresponding Author
Abstract
This study aims to determine the effectiveness of papaya‐fruit latex and yellow‐senesced leaves as a natural and organic tenderizer. The fruit and leaves of the plant were ground to powder, while 0 g, 10 g, 15 g and 20 g variations were used to cover 50 g of meat for 4 h. Subsequently, the Bradford and Kjeldahl methods were used to determine the protein content, while the protein profile was analyzed using SDS‐PAGE and confirmed using a Scanning Electron Microscope (SEM). The results showed that the protein concentration in mutton after fruit latex treatment was 41%, which was higher than the concentration of beef at 29.86%. Furthermore, the beef lost protein bands and its molecular weight fell from 225 kDa to 86 KDa, while the mutton experienced a reduction from 100 kDa to 65 kDa, which was significantly smaller than for raw meat. A single protein band was also observed at 21.6 kDa in the sample, indicating the presence of papain enzyme protein. Meanwhile, the SEM results showed that collagen and myofibril in the muscles were damaged in the treated meats. Based on these results, treatment with papaya fruit latex and yellow papaya leaves increases the tenderness of meat.
Keywords
Full Text:
PDFReferences
Abdeldaiem AM, Elbagoury EH, Abbas F, Faisal MA. 2019. Effect of some factors on the proteolytic activities of bromelain, cichorium and papain extracts. Ismailia J. Dairy Sci. Technol. 6(1):1–7. doi:10.21608/ijds.2019.58500.
Agrahari S, Sharma N. 2014. Extraction and characterization of protease from senesced leaves of papaya (Carica papaya) and it’s application. J. Genet. Eng. Biotechnol. 5(1):29–34. Amri E, Mamboya F. 2012. Papain, a plant enzyme of biological importance: A review. Am. J. Biochem. Biotechnol. 8(2):99–104. doi:10.3844/ajbbsp.2012.99.104.
Barekat S, Soltanizadeh N. 2017. Improvement of meat tenderness by simultaneous application of highintensity ultrasonic radiation and papain treatment, volume 39. Elsevier Ltd. doi:10.1016/j.ifset.2016.12.009.
Bhat ZF, Morton JD, Mason SL, Bekhit AEDA. 2018. Applied and emerging methods for meat tenderization: A comparative perspective. Compr. Rev. Food Sci. Food Saf. 17(4):841–859. doi:10.1111/1541 4337.12356.
BudamaKilinc Y, CakirKoc R, KecelGunduz S, Zorlu T, Kokcu Y, Bicak B, Karavelioglu Z, Ozel AE. 2018. Papain loaded poly(ϵcaprolactone) nanoparticles: Insilico and invitro studies. Journal of Fluorescence 28(5):1127–1142. doi:10.1007/s1089501822766.
Calkins CR, Sullivan G. 2001. Adding enzymes to improve beef tenderness inherent proteolytic enzymes. URL www.beefresearch.org. della Malva A, Marino R, Santillo A, Annicchiarico G, Caroprese M, Sevi A, Albenzio M. 2017. Proteomic approach to investigate the impact of different dietary supplementation on lamb meat tenderness. Meat Sci. 131:74–81. doi:10.1016/j.meatsci.2017.04.235.
Denessiouk K, Uversky VN, Permyakov SE, Permyakov EA, Johnson MS, Denesyuk AI. 2020. Papainlike cysteine proteinase zone (PCPzone) and PCP structural catalytic core (PCPSCC) of enzymes with cysteine proteinase fold. Int. J. Biol. Macromol. 165:1438–1446. doi:10.1016/j.ijbiomac.2020.10.022.
Ertbjerg P, Puolanne E. 2017. Muscle structure, sarcomere length and influences on meat quality: A review. Meat Sci. 132:139–152. doi:10.1016/j.meatsci.2017.04.261.
FernándezLucas J, Castañeda D, Hormigo D. 2017. New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends Food Sci. Technol. 68(2017):91–101. doi:10.1016/j.tifs.2017.08.017.
Gao X, Li X, Li Z, Du M, Zhang D. 2017. Dephosphorylation of myosin regulatory light chain modulates actin–myosin interaction adverse to meat tenderness. Int. J. Food Sci. Technol. 52(6):1400–1407. doi:10.1111/ijfs.13343.
Gerelt B, Ikeuchi Y, Suzuki A. 2000. Meat tenderization by proteolytic enzymes after osmotic dehydration. Meat Sci. 56(3):311–318. doi:10.1016/S0309 1740(00)000607.
Hafid K, John J, Sayah TM, Domínguez R, Becila S, Lamri M, Dib AL, Lorenzo JM, Gagaoua M. 2020. Onestep recovery of latex papain from Carica papaya using three phase partitioning and its use as milkclotting and meattenderizing agent. Int. J. Biol. Macromol. 146:798–810. doi:10.1016/j.ijbiomac.2019.10.048.
Holyavka M, Pankova S, Koroleva V, Vyshkvorkina Y, Lukin A, Kondratyev M, Artyukhov V. 2019. Influence of UV radiation on molecular structure and catalytic activity of free and immobilized bromelain, ficin and papain. J. Photochem. Photobiol. B 201(October):111681. doi:10.1016/j.jphotobiol.2019.111681.
Hu J, Ge S, Huang C, Cheung PC, Lin L, Zhang Y, Zheng B, Lin S, Huang X. 2018. Tenderization effect of whelk meat using ultrasonic treatment. Food Sci. Nutr. 6(7):1848–1857. doi:10.1002/fsn3.686.
Ikram A, Ambreen S, Azhar A, Khalid W. 2021. Meat tenderization through plant proteases: A mini review. Int. J. Biosci. 18(1):102–112. doi:10.12692/ijb/18.1.102112.
Istrati D. 2008. The influence of enzymatic tenderization with papain on functional properties of adult beef. J. Agroaliment. Processes Technol. 14(January 2008):140–146.
Junhui X, Huijuan C, Bin Z, Hui Y. 2020. The mechanistic effect of bromelain and papain on tenderization in jumbo squid (Dosidicus gigas) muscle. Food Res. Int. 131:108991. doi:10.1016/j.foodres.2020.108991.
Kartika AI, Kusuma HS, Darmawati S, Tanjung DS. 2019. Microstructural and proteomic analysis to investigate the effectiveness of papaya leaf as a tenderizer of beef and goat’s meat. IOP Conf. Ser. Earth Environ. Sci. 292(1):012010. doi:10.1088/1755 1315/292/1/012010.
Lambri M, Roda A, Dordoni R, Fumi MD, De Faveri DM. 2014. Mild process for dehydrated foodgrade crude papain powder from papaya fresh pulp: Labscale and pilot plant experiments. Chem. Eng. Trans. 38(June):7–12. doi:10.3303/CET1438002.
Lukin A. 2020. Application and comparison of proteolytic enzyme preparations in technology of protein hydrolyzates. Food Sci. Technol. 40(June):287–292. doi:10.1590/fst.09319.
Meshram A, Singhal G, Bhagyawant SS, Srivastava N. 2018. Plantderived enzymes: A treasure for food biotechnology. Elsevier Inc. doi:10.1016/B978012 8132807.000281.
Moczkowska M, Półtorak A, Wierzbicka A. 2017. The effect of ageing on changes in myofibrillar protein in selected muscles in relation to the tenderness of meat obtained from crossbreed heifers. Int. J. Food Sci. Technol. 52(6):1375–1382. doi:10.1111/ijfs.13436.
Monti R, Basilio CA, Trevisan HC, Contiero J. 2000. Purification of papain from fresh latex of Carica papaya. Braz. Arch. Biol. Technol. 43(5):501–507. doi:10.1590/s151689132000000500009.
Ningrum DR, Kosasih W, Priatni S. 2018. The comparative study of papain enzyme from papaya fruits California variant and Indonesian local variant. J. Kim. Ter. Indones. 19(2):42–48. doi:10.14203/jkti.v19i2.242.
Onopiuk A, Półtorak A, Wierzbicka A. 2019. Changes in chemical composition and tenderness of selected beef muscles during aging analysed with SDSPAGE and fluorescence spectroscopy. Anim. Sci. Pap. Rep. 37(3):243–258.
Parkash J, Sharma D, Yadav S. 2021. Application of natural tenderizers (papain and ginger) in buffalo calf meat. Pharma Innov. 10(3S):203–205. doi:10.22271/tpi.2021.v10.i3sd.5881.
Ranatunga KW. 2018. Temperature effects on force and actinmyosin interaction in muscle: A look back on some experimental findings. Int. J. Mol. Sci. 19(5):1538. doi:10.3390/ijms19051538.
Saeed M, ur Rahman S, Shabbir MA, Khan N, Shakeel A. 2017. Extraction and utilization of papaya extract as meat tenderizer and antimicrobial activity against Salmonella typhimurium. Pak. J. Agric. Sci. 54(1):153–159. doi:10.21162/PAKJAS/17.5032.
Soji Z, Chulayo AY. 2020. Beef tenderness evaluation using early postmortem muscle nanostructure. AsianAustralas. J. Anim. Sci. 00(00):1–11. doi:10.5713/ajas.20.0154.
Sukada IK, Suberata IW, Rasna NMA. 2019. Immersion effect with extracts of papaya leaf, pineapple, ginger on quality of organoleptic and Bali beef nutrition. Int. J. Life Sci. 3(1):12–24. doi:10.29332/ijls.v3n1.241.
Suleman R, Wang Z, Aadil RM, Hui T, Hopkins DL, Zhang D. 2020. Effect of cooking on the nutritive quality, sensory properties and safety of lamb meat: Current challenges and future prospects. Meat Sci. 167(1):108172. doi:10.1016/j.meatsci.2020.108172.
Vikhlyantsev IM, Podlubnaya ZA. 2017. Nuances of electrophoresis study of titin/connectin. Biophys. Rev. 9(3):189–199. doi:10.1007/s1255101702666.
Welde Y, Worku A. 2018. Identification and extraction of papain enzyme from papaya leaf in Adigrat Towen, Northern Ethiopia. J. Med. Plants Stud. 6(3):127–130.
Yu L, Zhang H. 2020. Separation and purification of papain crude extract from papaya latex using quaternary ammonium ionic liquids as adjuvants in PEGbased aqueous twophase systems. Food Anal. Methods 13(7):1462–1474. doi:10.1007/s1216102001761z.
Zapata I, Zerby HN, Wick M. 2009. Functional proteomic analysis predicts beef tenderness and the tenderness differential. J. Agric. Food Chem. 57(11):4956–4963. doi:10.1021/jf900041j.
DOI: https://doi.org/10.22146/ijbiotech.66434
Article Metrics
Abstract views : 3094 | views : 2787Refbacks
- There are currently no refbacks.
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.