The relationship between morpho‐physiological changes and expression of transcription factors in NTT local rice cultivars as a response to drought stress

Yustina Carolina Febrianti Salsinha(1), Alfino Sebastian(2), Ekris Sutiyanti(3), Yekti Asih Purwestri(4), Didik Indradewa(5), Diah Rachmawati(6*)

(1) Laboratory of Plant Physiology, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(2) Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(3) Laboratory of Plant Physiology, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(4) Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Laboratory of Biochemistry, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(5) Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(6) Laboratory of Plant Physiology, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(*) Corresponding Author


Response by plants to drought occurs through a series of mechanisms that involve transcription regulation. This research was conducted to study transcription factors (TF) and physiological changes in the drought response of local rice cultivars from East Nusa Tenggara (Nusa Tenggara Timur, NTT) during drought stress. Using three NTT local rice cultivars (Boawae Seratus Malam (BSM), Gogo Jak (GJ), and Kisol Manggarai (KM)) and the fraction of transpirable soil water (FTSW) method with two treatment levels, FTSW 1 (control) and FTSW 0.2 (severe stress), we analyzed the TF expression of OsDREB1A, OsDREB2A, OsWRKY45, and OsNAC6. Based on the result, the highest level of TF expression occurred in the BSM, followed by the GJ and KM cultivars. Analysis of physiological characteristics showed an association between TF expression levels and physiological response, with the BSM cultivar showing high pigment levels, high proline content, and lower H2O2 levels. A linkage was also found in relation to water conservation, as indicated by the higher relative water content and cell membrane stability index in the BSM cultivar in contrast to lower electronic leakage and malondialdehyde percentage when exposed to drought. Based on the results, it can be concluded that the BSM cultivar can be considered as a drought‐tolerant local cultivar according to morpho‐physiological analysis. In this study, all NTT local rice cultivars showed a subtle upregulation of stress‐responsive transcription factors OsDREB1A, OsDREB2A, OsWRKY45, and OsNAC6 as responses to drought stress.


drought; gene expressions; Nusa Tenggara Timur; local rice cultivars; transcription factors

Full Text:



Aroca R, Porcel R, Ruiz-Lozano JM. 2012. Regulation of root water uptake under abiotic stress conditions. doi:10.1093/jxb/err266.

Baillo EH, Kimotho RN, Zhang Z, Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. doi:10.3390/genes10100771.

Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39(1). doi:10.1007/BF00018060.

Bertolino LT, Caine RS, Gray JE. 2019. Impact of stomatal density and morphology on water-use efficiency in a changing world. doi:10.3389/fpls.2019.00225.

Bouazizi H, Jouili H, El Ferjani E. 2007. Effects of copper excess on growth, H2O2 production and peroxidase activities in maize seedlings (Zea mays L.). Pakistan J. Biol. Sci. 10(5). doi:10.3923/pjbs.2007.751.756.

Chaves MM, Miguel Costa J, Madeira Saibo NJ. 2011. Recent Advances in Photosynthesis Under Drought and Salinity, volume 57. Academic Press. doi:10.1016/B978-0-12-387692-8.00003-5.

Chen JB, Cao YN, Zhang ZY, Wang SM, Wu J, Wang LF. 2016. Cloning of the OAT gene and the correlation between its expression and drought tolerance in Phaseolus vulgaris L. J. Integr. Agric. 15(5). doi:10.1016/S2095-3119(15)61283-7.

Chen M, Chory J, Fankhauser C. 2004. Light signal transduction in higher plants. doi:10.1146/annurev.genet.38.072902.092259.

Connor DJ. 2005. Adaptation of olive (Olea europaea L.) to water-limited environments. Aust. J. Agric. Res. 56(11). doi:10.1071/AR05169.

da Silva E, Nogueira R, da Silva M, de Albuquerque M. 2011. Drought stress and plant nutrition. Plant Stress 5. Fang Y, You J, Xie K, Xie W, Xiong L. 2008. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol. Genet. Genomics 280(6). doi:10.1007/s00438-008-0386-6.

Farooq M, Hussain M, Wahid A, Siddique KH. 2012. Drought stress in plants: An overview, volume 9783642326. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-32653-0_1.

Filippou P, Bouchagier P, Skotti E, Fotopoulos V. 2014. Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ. Exp. Bot. 97. doi:10.1016/j.envexpbot.2013.09.010.

Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C. 2006. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. doi:10.1002/bies.20493.

Ágnes Szepesi, Szőllősi R. 2018. Chapter 17 - Mechanism of Proline Biosynthesis and Role of Proline Metabolism Enzymes Under Environmental Stress in Plants. Academic Press. doi: 9.00017-0. URL nce/article/pii/B9780128126899000170.

Guo M, Zhang X, Liu J, Hou L, Liu H, Zhao X. 2020. OsProDH Negatively Regulates Thermotolerance in Rice by Modulating Proline Metabolism and Reactive Oxygen Species Scavenging. Rice 13(1). doi:10.1186/s12284-020-00422-3.

Harborne JB. 1984. Phytochemical Methods : A Guide to Modern Techniques of Plant Analysis. second ed., Chapman and Hall, New York, USA. Chapmer Hall.

Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. 2012. Role of proline under changing environments: A review. doi:10.4161/psb.21949.

Hosang EY, Bombo Y, Basuki T. 2018. KERAGAMAN PLASMANUTFAH PADI GOGO LOKAL SUMBA BARAT DAYA. NTT. Bul. Plasma Nutfah 22(2). doi:10.21082/blpn.v22n2.2016.p93-100.

Jain M. 2013. Emerging Role of Metabolic Pathways in Abiotic Stress Tolerance. J. Plant Biochem. Physiol. 01(02). doi:10.4172/2329-9029.1000108.

Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Choi YD, Kim M, Reuzeau C, Kim JK. 2010. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 153(1). doi:10.1104/pp.110.154773.

Lata C, Muthamilarasan M, Prasad M. 2015. Drought stress responses and signal transduction in plants. In: Pandey GK, editors. Elucidation of Abiotic Stress Signaling in Plants, volume 2. Springer. Lehmann S, Funck D, Szabados L, Rentsch D. 2010. Proline metabolism and transport in plant development. doi:10.1007/s00726-010-0525-3.

Li X, Liu F. 2016. Drought stress memory and drought stress tolerance in plants: Biochemical and molecular basis. Cham: Springer International Publishing. doi:10.1007/978-3-319-28899-4_2.

Lotkowska ME, Tohge T, Fernie AR, Xue GP, Balazadeh S, Mueller-Roeber B. 2015. The arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiol. 169(3). doi:10.1104/pp.15.00605.

Maoka T. 2020. Carotenoids as natural functional pigments. doi:10.1007/s11418-019-01364-x.

Mattoo AK, Upadhyay RK, Rudrabhatla S. 2015. Abiotic stress in crops: Candidate genes, osmolytes, polyamines, and biotechnological intervention, volume 2. Springer. doi:10.1007/978-1-4939-2540- 7_15.

Memon AR, Hwang S, Deshpande N, Thompson GA, Herrin DL. 1995. Novel aspects of the regulation of a cDNA (Arf1) from Chlamydomonas with high sequence identity to animal ADP-ribosylation factor 1. Plant Mol. Biol. 29(3). doi:10.1007/BF00020985.

Mullan D, Pietragalla J. 2012. Leaf relative water content. Physiol. Breed. II A F. Guid. to wheat genotyping.

Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51(4). doi:10.1111/j.1365- 313X.2007.03168.x.

Pandey V, Shukla A. 2015. Acclimation and Tolerance Strategies of Rice under Drought Stress. doi:10.1016/j.rsci.2015.04.001.

Peters CA, MacMasters MM, French CL. 1939. Hydrogen Peroxide in the Colorimetric Determination of Iron by Thiocyanate. Ind. Eng. Chem. - Anal. Ed. 11(9). doi:10.1021/ac50137a012.

Phule AS, Barbadikar KM, Madhav MS, Subrahmanyam D, Senguttuvel P, Babu MB, Kumar PA. 2019. Studies on root anatomy, morphology and physiology of rice grown under aerobic and anaerobic conditions. Physiol. Mol. Biol. Plants 25(1). doi:10.1007/s12298-018- 0599-z.

Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 50(1). doi:10.1111/j.1365- 313X.2007.03034.x.

Qiu Y, Yu D. 2009. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ. Exp. Bot. 65(1). doi:10.1016/j.envexpbot.2008.07.002.

Refli, Purwestri YA. 2016. The response of antioxidant genes in rice (Oryza sativa L.) seedling Cv. Cempo Ireng under drought and salinity stresses. In: AIP Conf. Proc., volume 1744. doi:10.1063/1.4953521.

Refli R, Muljopawiro S, Dewi K, Rachmawati D. 2015. Expression analysis of antioxidant genes in response to drought stress in the fl ag leaf of two Indonesian rice cultivars. Indones. J. Biotechnol. 19(1). doi:10.22146/ijbiotech.8633.

Riechmann JL, Ratcliffe OJ. 2000. A genomic perspective on plant transcription factors. doi:10.1016/S1369- 5266(00)00107-2.

Salsinha YCF, Indradewa D, Purwestri YA, Rachmawati D. 2021a. Physiological and oxidative defense responses of local rice cultivars “Nusa Tenggara TimurIndonesia” during vegetative drought stress. Aust. J. Crop Sci. 15(3). doi:10.21475/ajcs.21.15.03.p2851.

Salsinha YCF, Maryani, Indradewa D, Purwestri YA, Rachmawati D. 2021b. Leaf physiological and anatomical characters contribute to drought tolerance of Nusa Tenggara Timur local rice cultivars. J. Crop Sci. Biotechnol. 24(3). doi:10.1007/s12892- 020-00082-1.

Salsinha YCF, Maryani, Indradewa D, Purwestri YA, Rachmawati D. 2021c. Morphological and anatomical characteristics of Indonesian rice roots from East Nusa Tenggara contribute to drought tolerance. Asian J. Agric. Biol. 2021(1). doi:10.35495/ajab.2020.05.304.

Serraj R, Liu D, He H, Sellamuthu R, Somayanda I, Cairns J, Dimayuga G, Torres R. 2008. Novel approaches for integration of physiology, genomics and breeding for drought resistance improvement in rice. Plant Prod. Sci. 10:1–4.

Swapna S, Shylaraj KS. 2017. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition. Rice Sci. 24(5). doi:10.1016/j.rsci.2017.04.004.

Tiwari JK, Munshi AD, Kumar R, Pandey RN, Arora A, Bhat JS, Sureja AK. 2010. Effect of salt stress on cucumber: Na+-K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiol. Plant. 32(1). doi:10.1007/s11738-009-0385-1.

Velázquez E, Tournier HA, Mordujovich De Buschiazzo P, Saavedra G, Schinella GR. 2003. Antioxidant activity of Paraguayan plant extracts. Fitoterapia 74(1- 2). doi:10.1016/S0367-326X(02)00293-9.

Wang X, Samo N, Li L, Wang M, Qadir M, Jiang K, Qin J, Rasul F, Yang G, Hu Y. 2019. Root distribution and its impacts on the drought tolerance capacity of hybrid rice in the Sichuan Basin area of China. Agronomy 9(2). doi:10.3390/agronomy9020079.

Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M. 2018. Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). doi:10.1007/s11103- 018-0761-6.

Weiste C, Iven T, Fischer U, Oñate-Sánchez L, DrögeLaser W. 2007. In planta ORFeome analysis by largescale over-expression of GATEWAY®-compatible cDNA clones: Screening of ERF transcription factors involved in abiotic stress defense. Plant J. 52(2). doi:10.1111/j.1365-313X.2007.03229.x.

Xiong L, Schumaker KS, Zhu JK. 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14(SUPPL.). doi:10.1105/tpc.000596.

Yang A, Dai X, Zhang WH. 2012. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J. Exp. Bot. 63(7). doi:10.1093/jxb/err431.


Article Metrics

Abstract views : 2196 | views : 1787


  • There are currently no refbacks.

Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.