Plant growth‐promoting activity of endophytic bacteria from sweet sorghum (Sorghum bicolor (L.) Moench)

https://doi.org/10.22146/ijbiotech.64893

Charlie Ester de Fretes(1*), Donny Widianto(2), Yekti Asih Purwestri(3), Tri Rini Nuringtyas(4)

(1) Research Center for Deep Sea, National Research and Innovation Agency, Jl. Y. Syaranamual, Ambon, Maluku, 97123, Indonesia
(2) Research Center for Biotechnology, Universitas Gadjah Mada, Jl. Teknika Utara, Barek, Yogyakarta, 55281, Indonesia; Department of Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta, 55281, Indonesia
(3) Research Center for Biotechnology, Universitas Gadjah Mada, Jl. Teknika Utara, Barek, Yogyakarta, 55281, Indonesia; Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
(4) Research Center for Biotechnology, Universitas Gadjah Mada, Jl. Teknika Utara, Barek, Yogyakarta, 55281, Indonesia; Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
(*) Corresponding Author

Abstract


Application of high levels of chemical fertilizers for optimal growth of sweet sorghum causes environmental degradation. Plant growth‐promoting bacteria have biotechnological importance because they can improve the growth and health of important agronomic plants. This study aimed to isolate, characterize, and identify endophytic bacteria associated with sweet sorghum (cv. KCS105), and also to study the inoculation effects of selected isolates on sorghum growth. In this study, 35 isolates were evaluated for their ability to support plant growth. The results showed that seven isolates were diazotrophic, six were capable of dissolving phosphate, six produced IAA and could detect ACC‐deaminase activity, and three inhibited the growth of pathogenic fungi. Nine isolates exhibiting mechanisms for promoting plant growth from the Alphaproteobacteria (Devosia), Firmicutes (Bacillus, Paenibacillus, Staphylococcus), and Actinobacteria (Microbacterium, Brachybacterium) phyla were identified. In addition, the Paenibacillus sp. BB7, Bacillus sp. PIB1B, and Bacillus sp. PLB1B isolates showed increasing effects on plant growth in greenhouse tests. Endophytic bacterial isolates which display plant growth‐promoting features can potentially be employed as biofertilizer agents. They may also address environmental damage problems resulting from the use of chemical fertilizers and pesticides.

Keywords


Endophytic bacteria; plant growth‐promoting bacteria; sweet sorghum; 16S rRNA gene

Full Text:

PDF


References

Afifi MMI, El­Sayed GAM, Manal A, El­Gamal H, Massoud ON. 2014. Synergistic effect of biofertilizers containing N­fixer, P and K solubilizers and humic substances on Sorghum bicolor productivity. Middle East J Appl Sci. 4(4):1065–1074.

Afzal I, Shinwari ZK, Sikandar S, Shahzad S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res. 221:36–49. doi:10.1016/j.micres.2019.02.001.

Almodares A, Hadi MR. 2009. Production of bioethanol from sweet sorghum: A review. African J Agric Res. 4(9):772–780.

Behera BC, Yadav H, Singh SK, Mishra RR, Sethi BK, Dutta SK, Thatoi HN. 2017. Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. J Genet Eng Biotechnol. 15(1):169– 178. doi:10.1016/j.jgeb.2017.01.003.

Compant S, Clément C, Sessitsch A. 2010. Plant growth­promoting bacteria in the rhizo­ and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 42(5):669–678. doi:10.1016/j.soilbio.2009.11.024.

Correa­Galeote D, Bedmar EJ, Arone GJ. 2018. Maize endophytic bacterial diversity as affected by soil cultivation history. Front Microbiol. 9(MAR). doi:10.3389/fmicb.2018.00484.

de Fretes CE, Suryani R, Purwestri YA, Nuringtyas TR, Widianto D. 2018. Diversity of endophytic bacteria in sweet sorghum (Sorghum bicolor (L.) Moench) and their potential for promoting plant growth. Indian J Sci Technol. 11(11):1–10. doi:10.17485/ijst/2018/v11i11/120283.

Duca D, Lorv J, Patten C, Rose D, Glick B. 2014. Microbial indole­3­acetic acid and plant growth. Anton Van Leeuwenhoek 106:85–125. doi:10.1007/s10482­013­ 0095­y.

Ek­Ramos MJ, Gomez­Flores R, Orozco­Flores AA, Rodríguez­Padilla C, González­Ochoa G, Tamez Guerra P. 2019. Bioactive products from plant endophytic Gram­positive bacteria. Front Microbiol. 10(MAR). doi:10.3389/fmicb.2019.00463.

Grönemeyer JL, Burbano CS, Hurek T, Reinhold­Hurek B. 2012. Isolation and characterization of root associated bacteria from agricultural crops in the Kavango region of Namibia. Plant Soil. 356(1­2):67–82. doi:10.1007/s11104­011­0798­7.

Gupta G, Parihar SS, Ahirwar KN, Snehi SK, Singh V. 2015. Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture. J Microb Biochem Technol. 07(02). doi:10.4172/1948­5948.1000188.

Gusti I, Mas A, Agung S, Ketut Sardiana I, Diara W, Made G, Nurjaya O. 2013. Adaptation, Biomass and Ethanol Yields of Sweet Sorghum (Sorghum bicolor (L.) Moench) Varieties at Dryland Farming Areas of Jimbaran Bali, Indonesia. J Biol Agric Healthc. 3(17):110–115. URL www.iiste.org.

Hallmann J, Quadt­Hallmann A, Mahaffee WF, Kloepper JW. 1997. Bacterial endophytes in agricultural crops. Can J Microbiol. 43(10):895–914. doi:10.1139/m97­ 131.

Hardoim PR, van Overbeek LS, van Elsas JD. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16(10):463–471. doi:10.1016/j.tim.2008.07.008.

Hayat R, Ali S, Amara U, Khalid R, Ahmed I. 2010. Soil beneficial bacteria and their role in plant growth promotion: A review. doi:10.1007/s13213­010­0117­1.

Hidayati U, Chaniago IA, Munif A, S, Santosa DA. 2014. Potency of Plant Growth Promoting Endophytic Bacteria from Rubber Plants (Hevea brasiliensis Mull. Arg.). J Agron. 13(3):147–152. doi:10.3923/ja.2014.147.152.

Jasim B, Jimtha John C, Shimil V, Jyothis M, Radhakrishnan EK. 2014a. Studies on the factors modulating indole­3­acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene. J Appl Microbiol. 117(3):786–799. doi:10.1111/jam.12569.

Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK. 2014b. Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech. 4(2):197–204. doi:10.1007/s13205­013­0143­3.

Mareque C, Taulé C, Beracochea M, Battistoni F. 2015. Isolation, characterization and plant growth promotion effects of putative bacterial endophytes associated with sweet sorghum (Sorghum bicolor (L) Moench). Ann Microbiol. 65(2):1057–1067. doi:10.1007/s13213­014­0951­7.

Olanrewaju OS, Glick BR, Babalola OO. 2017. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol. 33(11). doi:10.1007/s11274­017­2364­9. Pretty J, Bharucha ZP. 2014. Sustainable intensification in agricultural systems. Ann Bot. 114(8):1571–1596. doi:10.1093/aob/mcu205.

Rosenblueth M, Martínez­Romero E. 2006. Bacterial endophytes and their interactions with hosts. Mol Plant­Microbe Interact. 19(8):827– 837. doi:10.1094/MPMI­19­0827.

Sansinenea E, Ortiz A. 2011. Secondary metabolites of soil Bacillus spp. Biotechnol Lett. 33(8):1523–1538. doi:10.1007/s10529­011­0617­5.

Santoyo G, Moreno­Hagelsieb G, del Carmen Orozco Mosqueda M, Glick BR. 2016. Plant growth promoting bacterial endophytes. Microbiol Res. 183:92–99. doi:10.1016/j.micres.2015.11.008.

Sun Y, Cheng Z, Glick BR. 2009. The presence of a 1­aminocyclopropane­1­carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth­promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett. 296(1):131–136. doi:10.1111/j.1574­ 6968.2009.01625.x.

Vendan RT, Yu YJ, Lee SH, Rhee YH. 2010. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol. 48(5):559–565. doi:10.1007/s12275­010­0082­1.

Xu L, Zhang Y, Read N, Liu S, Friman VP. 2017. Devosia nitraria sp. nov., a novel species isolated from the roots of Nitraria sibirica in China. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 110(11):1475–1483. doi:10.1007/s10482­017­0901­ z.



DOI: https://doi.org/10.22146/ijbiotech.64893

Article Metrics

Abstract views : 2933 | views : 2298

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.