Cytotoxic effects of parijoto (Medinilla speciosa Reinw. Ex. Bl.) methanol extract combined with cisplatin on WiDr colon cancer cells through apoptosis induction

Anif Nur Artanti(1*), Fea Prihapsara(2), Ranita Kumalasari Susanto(3)

(1) Sebelas Maret University, Jl. Ir. Sutami No.36, Surakarta, Central Java 57126, Indonesia
(2) Sebelas Maret University, Jl. Ir. Sutami No.36, Surakarta, Central Java 57126, Indonesia
(3) Sebelas Maret University, Jl. Ir. Sutami No.36, Surakarta, Central Java 57126, Indonesia
(*) Corresponding Author


Parijoto (Medinilla speciosa Reinw. Ex. Bl.) is a medicinal plant with cytotoxic effects on cancer cells in vitro. As only a limited number of studies have reported the effect of parijoto on colon cancer cells, this study initially aimed to measure the total flavonoid levels and potential cytotoxic effects of parijoto methanol extract (PME) through cell viability assays and expression of the apoptotic protein on WiDr colon cancer cells as a model. PME cytotoxic activity was determined by conducting a cytotoxicity test on WiDr colon cancer cells using the MTT assay. The synergistic cytotoxic effects of the PME and cisplatin were tested to obtain the combination index (CI) value. Apoptosis was analyzed by flow cytometry, and the apoptotic protein expression was observed by immunocytochemical tests. Furthermore, quercetin as a major flavonoid in PME was measured using a UV–Vis spectrophotometer. The results showed that PME had a moderate cytotoxic activity with an IC50 of 198.64±1.6 µg/mL, whereas the IC50 of cisplatin was 2.34±0.7 µg/mL. The PME with cisplatin combination test showed a strong synergistic effect with a CI value of <1 (0.1‐0.4). The combination showed increased apoptosis properties compared to PME treatment alone. In addition, immunocytochemistry showed that PME alone or in combination with cisplatin increased the pro‐apoptosis proteins (p53 and caspase‐9) and suppressed Bcl‐2 expression. Moreover, the cell viability value increased as the PME concentration decreased. The administration of PME led to changes in cell morphology, lower cell density, and a decreasing number of living cells. Therefore, the combination of PME and cisplatin had a strong synergistic effect in inducing apoptosis.


apoptosis; cisplatin; cytotoxic; parijoto methanol extract; WiDr colon cancer cells

Full Text:



Abraha AM, Ketema EB. 2016. Apoptotic pathways as a therapeutic target for colorectal cancer treatment. World J. Gastrointest. Oncol. 8(8):583–591. doi:10.4251/WJGO.V8.I8.583.

American Cancer Society. 2017. Colorectal cancer facts and figures 2017­2019. American Cancer Society. URL­or g/research/cancer­facts­and­statistics/colorectal­ca ncer­facts­and­figures/colorectal­cancer­facts­and­f igures­2017­2019.pdf.

Anandani ET, Kusnanto P, Purwanto B. 2018. Pengaruh ekstrak propolis terhadap ekspresi caspase 3, proliferasi dan induksi apoptosis pada sel kanker kolon (cell line WiDr). Biomedika 9(2):23–30. doi:10.23917/biomedika.v9i2.5839

Ashcroft M, Vousden KH. 1999. Regulation of p53 stability. Oncogene 18(53):7637–7643. doi:10.1038/sj.onc.1203012.

Azizah DN, Kumolowati E, Faramayuda F. 2014. Penetapan kadar flavonoid metode AlCl3 pada ekstrak metanol kulit buah kakao (Theobroma cacao L.). Kartika J. Ilm. Farm. 2(2):45–49. doi:10.26874/kjif.v2i2.14.

Bostan M, Mihaila M, Hotnog C, Bleotu C, Anton G, Roman V, Brasoveanu LI. 2016. Modulation of Apoptosis in Colon Cancer Cells by Bioactive Compounds. London: IntechOpen. doi:10.5772/63382.

Chang CC, Yang MH, Wen HM, Chern JC. 2002. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. Food Drug Anal. 10(3):178–182. doi:10.38212/2224­6614.2748.

Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ. 2001. BCL­2, BCLXL sequester BH3 domain­only molecules preventing BAX­ and BAK­mediated mitochondrial apoptosis. Mol. Cell 8(3):705–711. doi:10.1016/S1097­ 2765(01)00320­3.

Doyle A, Bryan GJ. 1998. Cell and tissue culture: laboratory procedure in biotechnology. Chichester, UK: John Wiley and Sons.

Edagawa M, Kawauchi J, Hirata M, Goshima H, Inoue M, Okamoto T, Murakami A, Maehara Y, Kitajima S. 2014. Role of Activating Transcription Factor 3 (ATF3) in Endoplasmic Reticulum (ER) stress­induced sensitization of p53­ deficient human colon cancer cells to Tumor Necrosis Factor (TNF)­related apoptosis­inducing ligand (TRAIL)­mediated apoptosis through up­regulation of Death Receptor 5 (DR5) by zerumbone and celecoxib. J. Biol. Chem. 289(31):21544–21561. doi:10.1074/jbc.M114.558890.

Fawwaz M, Muliadi DS, Muflihunna A. 2017. Kedelai hitam (Glycine soja) terhidrolisis sebagai sumber flavonoid total. J. Fitofarmaka Indones. 4(1):194– 198. doi:10.33096/jffi.v4i1.227.

Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A, D’Arcangelo D, Norelli S, Valle G, Nisini R, Beninati S, Tabolacci C, Jadeja RN. 2019. Beneficial role of phytochemicals on oxidative stress and agerelated diseases. Biomed Res. Int. vol. 2019:16 pp. doi:10.1155/2019/8748253.

Fox JT, Sakamuru S, Huang R, Teneva N, Simmons SO, Xia M, Tice RR, Austin CP, Myung K. 2012. Highthroughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death. Proc. Natl. Acad. Sci. U. S. A. 109(14):5423–5428. doi:10.1073/pnas.1114278109.

Haider T, Pandey V, Banjare N, Gupta PN, Soni V. 2020. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacol. Reports 72(5):1125–1151. doi:10.1007/s43440­020­00138­7.

Hall MD, Okabe M, Shen DW, Liang XJ, Gottesman MM. 2008. The role of cellular accumulation in de­termining sensitivity to platinum­based chemotherapy. Annu. Rev. Pharmacol. Toxicol. 48:495–535. doi:10.1146/annurev.pharmtox.48.080907.180426.

Haryanti S, Pramono S, Murwanti R, Meiyanto E. 2017. The Synergistic Effect of Doxorubicin and Ethanolic Extracts of Caesalpinia sappan L. Wood and Ficus septica Burm. f. Leaves on Viability, Cell Cycle Progression, and Apoptosis Induction of MCF 7 Cells. Indones. J. Biotechnol. 21(1):29–37. doi:10.22146/ijbiotech.26105.

Haupt S, Berger M, Goldberg Z, Haupt Y. 2003. Apoptosis ­ The p53 network. J. Cell Sci. 116(20):4077–4085. doi:10.1242/jcs.00739.

He G, He G, Zhou R, Pi Z, Zhu T, Jiang L, Xie Y. 2016. Enhancement of cisplatin­induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo. Biochem. Biophys. Res. Commun. 469(4):1075–1082. doi:10.1016/j.bbrc.2015.12.100.

Herůdková J, Paruch K, Khirsariya P, Souček K, Krkoška M, Vondálová Blanářová O, Sova P, Kozubík A, Hyršlová Vaculová A. 2017. Chk1 Inhibitor SCH900776 Effectively Potentiates the Cytotoxic Effects of Platinum­Based Chemotherapeutic Drugs in Human Colon Cancer Cells. Neoplasia (United States) 19(10):830–841. doi:10.1016/j.neo.2017.08.002.

Hu KQ, Yu CH, Mineyama Y, McCracken JD, Hillebrand DJ, Hasan M. 2003. Inhibited proliferation of cyclooxygenase­2 expressing human hepatoma cells by NS­398, a selective COX­2 inhibitor. Int. J. Oncol. 22(4):757–763. doi:10.3892/ijo.22.4.757.

Huang CY, Linda CHY. 2015. Pathophysiological mechanisms of death resistance in colorectal carcinoma. World J. Gastroenterol. 21(41):11777–11792. doi:10.3748/wjg.v21.i41.11777.

Inoue A, Muranaka S, Fujita H, Kanno T, Tamai H, Utsumi K. 2004. Molecular mechanism of diclofenac­induced apoptosis of promyelocytic leukemia: Dependency on reactive oxygen species, Akt, Bid, cytochrome c, and caspase pathway. Free Radic. Biol. Med. 37(8):1290–1299. doi:10.1016/j.freeradbiomed.2004.07.003.

Liu HC, Chen GG, Vlantis AC, Leung BC, Tong MC, Van Hasselt CA. 2006. 5­Fluorouracil mediates apoptosis and G1/S arrest in laryngeal squamous cell carcinoma via a p53­independent pathway. Cancer J. 12(6):482– 493. doi:10.1097/00130404­200611000­00008.

Mabberley DJ. 2017. Mabberley’s Plant­Book: A Portable Dictionary of Plants, their Classification and Uses (4th edition). Cambridge, UK: Cambridge University Press.

Mazumder K, Biswas B, Raja IM, Fukase K. 2020. A review of cytotoxic plants of the Indian subcontinent and a broad­spectrum analysis of their bioactive compounds. Molecules 25(8):1–40. doi:10.3390/molecules25081904.

Mendelsohn J, Howley PM, Israel MA, Gray JW, Thompson CB. 2015. The Molecular Basis of Cancer. Philadelphia: Elsevier. doi:10.1016/B978­1­4160­ 3703­3.X5001­7.

Neuhouser ML. 2004. Dietary flavonoids and cancer risk: Evidence from human population studies. Nutr. Cancer 50(1):1–7. doi:10.1207/s15327914nc5001_1.

Niswah L. 2014. Antibacterial activity test of parijoto fruit extract (medinilla speciosa blume) using the disc diffusion method. Jakarta: Medical Faculty and Health Sciences, Syarif Hidayatullah Islamic State University. URL https: // /26130/1/LUKLUATUN%20NISWAH­fkik.pdf.

Noguchi P, Wallace R, Johnson J, Earley EM, O’Brien S, Ferrone S, Pellegrino MA, Milstien J, Needy C, Browne W, Petricciani J. 1979. Characterization of WiDr: A human colon carcinoma cell line. In Vitro 15(6):401–408. doi:10.1007/BF02618407.

Noviantari A, Rinendyaputri R, Ariyanto I. 2020. Differentiation ability of rat­mesenchymal stem cells from bone marrow and adipose tissue to neurons and glial cells. Indones. J. Biotechnol. 25(1):43–51. doi:10.22146/ijbiotech.42511.

Prayong P, Barusrux S, Weerapreeyakul N. 2008. Cytotoxic activity screening of some indigenous Thai plants. Fitoterapia 79(7­8):598–601. doi:10.1016/j.fitote.2008.06.007.

Primikyri A, Chatziathanasiadou MV, Karali E, Kostaras E, Mantzaris MD, Hatzimichael E, Shin JS, Chi SW, Briasoulis E, Kolettas E, Gerothanassis IP, Tzakos AG. 2014. Direct binding of Bcl­2 family proteins by quercetin triggers its pro­apoptotic activity. ACS Chem. Biol. 9(12):2737–2741. doi:10.1021/cb500259e.

Pritchard CC, Grady WM. 2011. Colorectal cancer molecular biology moves into clinical practice. Gut 60(1):116–129. doi:10.1136/gut.2009.206250.

Rawlinson R, Massey AJ. 2014. γH2AX and Chk1 phosphorylation as predictive pharmacodynamic biomarkers of Chk1 inhibitor­chemotherapy combination treatments. BMC Cancer 14(1):1–13. doi:10.1186/1471­2407­14­483.

Redza­Dutordoir M, Averill­Bates DA. 2016. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta ­ Mol. Cell Res. 1863(12):2977–2992. doi:10.1016/j.bbamcr.2016.09.012.

Reynolds CP, Maurer BJ. 2005. Evaluating response to antineoplastic drug combinations in tissue culture models. Methods Mol. Med. 110:173–183. doi:10.1385/1­ 59259­869­2:173.

Roos WP, Kaina B. 2013. DNA damage­induced cell death: From specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett. 332(2):237– 248. doi:10.1016/j.canlet.2012.01.007.

Sa’adah NN, Purwani KI, Nurhayati APD, Ashuri NM. 2017. Analysis of lipid profile and atherogenic index in hyperlipidemic rat (Rattus norvegicus Berkenhout, 1769) that given the methanolic extract of Parijoto (Medinilla speciosa). AIP Conf. Proc. 1854(1):020031. doi:10.1063/1.4985422.

Sanchez­Gonzalez PD, Lopez­Hernandez FJ, PerezBarriocanal F, Morales AI, Lopez­Novoa JM. 2011. Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti­tumour activity. Nephrol. Dial. Transplant. 26(11):3484–3495. doi:10.1093/ndt/gfr195.

Shen H, Perez RE, Davaadelger B, Maki CG. 2013. Two 4N Cell­Cycle Arrests Contribute to Cisplatin­Resistance. PLoS One 8(4):e59848. doi:10.1371/journal.pone.0059848.

Sholikhah EN, Jumina, Widyarini S, Hadanu R, Mustofa. 2018. In vitro anticancer activity of N­benzyl 1,10­ phenanthroline derivatives on human cancer cell lines and their selectivity. Indones. J. Biotechnol. 23(2):68– 73. doi:10.22146/ijbiotech.33997.

Spreckelmeyer S, Orvig C, Casini A. 2014. Cellular transport mechanisms of cytotoxic metallodrugs: An overview beyond cisplatin. Molecules 19(10):15584– 15610. doi:10.3390/molecules191015584.

Stevens MF, McCall CJ, Lelieveld P, Alexander P, Richter A, Davies DE. 1994. Structural Studies on Bioactive Compounds. 23. Synthesis of Polyhydroxylated 2­Phenylbenzothiazoles and a Comparison of Their Cytotoxicities and Pharmacological Properties with Genistein and Quercetin. J. Med. Chem. 37(11):1689–1695. doi:10.1021/jm00037a020.

Sutejo IR, Putri H, Meiyanto E. 2016. The Selectivity of Ethanolic Extract of Buah Makassar (Brucea javanica) on Metastatic Breast Cancer Cells. J. Agromedicine Med. Sci. 2(1):1–6. doi:10.19184/ams.v2i1.2422.

Tai WP, Hu PJ, Wu J, Lin XC. 2014. The inhibition of Wnt/β­catenin signaling pathway in human colon cancer cells by sulindac. Tumori 100(1):97–101. doi:10.1700/1430.15823.

Tedja I, Abdullah M. 2013. Chronic Inflammation in Colorectal Carcinogenesis: Role of Inflammatory Mediators, Intestinal Microbes, and Chemoprevention Potency. Indones. J. Gastroenterol., Hepatol., Dig. Endosc. 14(1):29–34. doi:10.24871/141201329­34.

Thornthwaite JT, Shah HR, Shah P, Peeples WC, Respess H. 2013. The formulation for cancer prevention & therapy. Adv. Biol. Chem. 3(3):356–387. doi:10.4236/abc.2013.33040.

Tusanti I, Johan A, Kisdjamiatun R. 2014. Sitotoksisitas in vitro ekstrak etanolik buah parijoto (Medinilla speciosa, reinw.ex bl.) terhadap sel kanker payudara T47D. J. Gizi Indones. (The Indones. J. Nutr. 2(2):53– 58. doi:10.14710/jgi.2.2.53­58.

Vifta RL, Advistasari YD. 2018. Skrining Fitokimia, Karakterisasi, dan Penentuan Kadar Flavonoid Total Ekstrak dan Fraksi­Fraksi Buah Parijoto (Medinilla speciosa B.). Pros. Semin. Nas. Unimus 1:8–14.

Wachidah LN. 2013. Uji Aktivitas Antioksidan Serta Penentuan Kandungan Fenolat Dan Flavonoid Total Dari Buah Parijoto ( Medinilla Speciosa Blume ). Jakarta: UIN Syarif Hidayatullah Jakarta.

Wahyuni RA, Putri IY, Jayadi EL, Prastiyanto ME. 2019. Antibacterial activity of parijoto fruit extract (Medinilla speciosa) on bacteria extended spectrum betalactamase (ESBL) escherichia coli and methicillin resistant staphylococcus aureus (MRSA). J. Media Anal. Kesehat. 10(2):106–118. doi:10.32382/mak.v10i2.1250.

Weerapreeyakul N, Nonpunya A, Barusrux S, Thitimetharoch T, Sripanidkulchai B. 2012. Evaluation of the anticancer potential of six herbs against a hepatoma cell line. Chinese Med. (United Kingdom) 7:1–7. doi:10.1186/1749­8546­7­15.

Wijayanti D, Ardigurnita F. 2019. Potential of Parijoto (Medinilla speciosa) Fruits and Leaves in Male Fertility. Anim. Prod. 20(2):81–86. doi:10.20884/1.jap.2018.20.2.685.

World Health Organization. 2018. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. September. International Agency for Research on Cancer. URL­content/uplo ads/2018/09/pr263_E.pdf.

Wulandari F, Ikawati M, Kirihata M, Kato JY, Meiyanto E. 2021. Curcumin Analogs, PGV­1 and CCA­1.1 Exhibit Anti­migratory Effects and Suppress MMP9 Expression on WiDr Cells. Indones. Biomed. J. 13(3):271–280. doi:10.18585/inabj.v13i3.1583.

Zakinah T, Nurani LH, Widyarini S. 2017. Efek Kokemoterapi Fraksi Etil Asetat Akar Pasak Bumi dan Doxorubicin terhadap Proliferasi dan Ekpresi Bax Jaringan Payudara Tikus SD. Journal of Pharmaceutical Sciences and Community 14(1):25–36. doi:10.24071/jpsc.141559.

Zambetti GP, Bargonetti J, Walker K, Prives C, Levine AJ. 1992. Wild­type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev. 6(7):1143–1152. doi:10.1101/gad.6.7.1143.

Zhu J, Zhang C, Qing Y, Cheng Y, Jiang X, Li M, Yang Z, Wang D. 2015. Genistein induces apoptosis by stabilizing intracellular p53 protein through an APE1­ mediated pathway. Free Radic. Biol. Med. 86:209– 218. doi:10.1016/j.freeradbiomed.2015.05.030.

Zuckerman V, Wolyniec K, Sionov RV, Haupt S, Haupt Y. 2009. Tumour suppression by p53: The importance of apoptosis and cellular senescence. J. Pathol. 219(1):3–15. doi:10.1002/path.2584.


Article Metrics

Abstract views : 1655 | views : 1391


  • There are currently no refbacks.

Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.