Ethanolic extract of sappan wood (Caesalpinia sappan L.) inhibits MCF-7 and MCF-7/HER2 mammospheres' formation: an in vitro and bioinformatic study
Dhania Novitasari(1), Laeli Muntafiah(2), Nur Fitra Sari(3), Edy Meiyanto(4), Adam Hermawan(5*)
(1) Cancer Chemoprevention Research Center (CCRC), Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Cancer Chemoprevention Research Center (CCRC), Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Cancer Chemoprevention Research Center (CCRC), Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Cancer Chemoprevention Research Center (CCRC), Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Laboratory of Macromolecular Engineering, Departement of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Departemen Kimia Farmasi, Fakultas Farmasi, Universitas Gadjah Mada, Sekip Utara II, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
One of the mechanisms of cancer cell resistance toward chemotherapy is through cancer stem cells (CSCs), which are characterized by excessive activation of regulator proteins such as human epidermal receptor 2 (HER2). Sappan wood (Caesalpinia sappan L.) contains brazilin and brazilein that exhibit cytotoxic effects on several cancer cell lines. We aimed to explore the potency of the ethanolic extract of sappan (EES) in CSCs through bioinformatic analyses and by using a three-dimensional (3D) breast cancer stem cells (BCSCs) for in vitro assay with two different models (i.e., BCSCs and HER2-BCSCs) in order to identify the potential therapeutic targets of genes (PTTGs). Bioinformatic analyses identified PTTGs, which were further analyzed by gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) networks, and hub protein selection. Mammospheres were cultured under conditioned media. The cytotoxic effects of EES were then measured by direct counting and based on the mammosphere-forming potential (MFP). Bioinformatic analysis disclosed PIK3CA and TP53 as PTTGs in BCSCs and HER2-BCSCs, respectively. In addition, the KEGG pathway analyses also demonstrated that PTTGs could regulate the ERBB pathway. EES thus demonstrated cytotoxicity and inhibited the formation of mammospheres. Collectively, EES exhibited excellent potential for further development as an inhibitor of cancer stem cells in breast cancer.
Keywords
Full Text:
PDFReferences
Arteaga CL. 2011. ERBB receptors in cancer: signaling from the inside. Breast Cancer Res. 13(2):304. doi:10.1186/bcr2829.
Bashari MH, Fan F, Vallet S, Sattler M, Arn M, LucknerMinden C, SchulzeBergkamen H, Zörnig I, Marme F, Schneeweiss A, Cardone MH, Opferman JT, Jäger D, Podar K. 2016. Mcl1 confers protection of Her2positive breast cancer cells to hypoxia: therapeutic implications. Breast Cancer Res. 18(1):26. doi:10.1186/s1305801606864.
Bashari MH, Huda F, Tartila TS, Shabrina S, Putri T, Qomarilla N, Atmaja H, Subhan B, Sudji IR, Meiyanto E. 2019. Bioactive Compounds in the EthanolExtract of Marine Sponge Stylissa carteri Demonstrates Potential Anti Cancer Activity in Breast Cancer Cells. Asian Pac J Cancer Prev. 20(4):1199–1206. doi:10.31557/APJCP.2019.20.4.1199.
Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC. 2018. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer. 17(1):34. doi:10.1186/s129430180797x.
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al. 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery. 2(5):401–404. doi:10.1158/21598290.CD120095.
Cortés J, Calvo E, Vivancos A, PerezGarcia J, Recio JA, Seoane J. 2014. New approach to cancer therapy based on a molecularly defined cancer classification. CA: Cancer J Clin. 64(1):70–74. doi:10.3322/caac.21211.
Cuong TD, Hung TM, Kim JC, Kim EH, Woo MH, Choi JS, Lee JH, Min BS. 2012. Phenolic compounds from Caesalpinia sappan heartwood and their antiinflammatory activity. J Nat Prod. 75(12):2069–2075. doi:10.1021/np3003673.
Fadaka A, Ajiboye B, Ojo O, Adewale O, Olayide I, Emuowhochere R. 2017. Biology of glucose metabolization in cancer cells. J Oncol Sci. 3(2):45–51. doi:10.1016/j.jons.2017.06.002.
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al. 2013. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. doi:10.1126/scisignal.2004088.
Garraway LA, Jänne PA. 2012. Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discovery. 2(3):214–226. doi:10.1158/2159 8290.CD120012. Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, ChiaperoStanke L, TaylorPapadimitriou J, Burchell JM. 2008. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 10(3):R52. doi:10.1186/bcr2106.
Handayani S, Susidarti RA, Jenie RI, Meiyanto E. 2017. Two Active Compounds from Caesalpinia sappan L. in Combination with Cisplatin Synergistically Induce Apoptosis and Cell Cycle Arrest on WiDr Cells. Adv Pharm Bull. 7(3):375–380. doi:10.15171/apb.2017.045.
Handayani S, Susidarti RA, Udin Z, Meiyanto E, Jenie RI. 2016. Brazilein in Combination with Cisplatin Inhibit Proliferation and Migration on Highly Metastatic Cancer Cells, 4T1. Indones J Biotechnol. 21(1):38–47. doi:10.22146/ijbiotech.26106.
Hanif N, Hermawan A, Meiyanto E. 2019. Caesalpinia sappan L. Ethanolic Extract Decrease Intracellular ROS Level and Senescence of 4T1 Breast Cancer Cells. Indonesian Journal of Cancer Chemoprevention 10(1):16–23. doi:10.14499/indonesianjcanchemoprev10iss1pp16 23.
Haryanti S, Pramono S, Murwanti R, Meiyanto E. 2016. The synergistic effect of doxorubicin and ethanolic extracts of Caesalpinia sappan L. wood and Ficus septica Burm. f. leaves on viability, cell cycle progression, and apoptosis induction of MCF 7 cells. Indones J Biotechnol. 21(1):29–37. doi:10.22146/ijbiotech.26105.
Hermawan A, Putri H. 2020. Integrative Bioinformatics Analysis Reveals Potential Target Genes and TNFα Signaling Inhibition by Brazilin in Metastatic Breast Cancer Cells. Asian Pac J Cancer Prev. 21(9):2751– 2762. doi:10.31557/APJCP.2020.21.9.2751.
Hsieh CY, Tsai PC, Chu CL, Chang FR, Chang LS, Wu YC, Lin SR. 2013. Brazilein suppresses migration and invasion of MDAMB231 breast cancer cells. Chem Biol Interact. 204(2):105–115. doi:10.1016/j.cbi.2013.05.005.
Hsu JL, Hung MC. 2016. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev. 35(4):575–588. doi:10.1007/s1055501696496.
Jenie R, Handayani S, Susidarti RA, Meiyanto E. 2020. The Effect of Brazilin from Caesalpinia sappan on Cell Cycle and Modulation and Cell Senescence in T47D cells. Indones J Pharm. 31(2):84. doi:10.14499/indonesianjpharm31iss2pp84.
Jenie RI, Handayani S, Susidarti RA, Udin LZ, Meiyanto E. 2018. The Cytotoxic and Antimigratory Activity of BrazilinDoxorubicin on MCF 7/HER2 Cells. Adv Pharm Bull. 8(3):507–516. doi:10.15171/apb.2018.059.
Khamsita R, Hermawan A, Putri DDP, Meiyanto E. 2012. Ethanolic Extract of Secang (Caesalpinia sappan L.) Wood Performs as Chemosensitizing Agent Through Apoptotic Induction on Breast Cancer MCF7 Cells. Indones J Cancer Chemoprevention. 3(3):444–449. doi:10.14499/indonesianjcanchemoprev3iss3pp444 449.
Kim EC, Hwang YS, Lee HJ, Lee SK, Park MH, JeonBH, Jeon CD, Lee SK, Yu HH, You YO. 2005. Caesalpinia sappan Induces Cell Death by Increasing the Expression of p53 and p21WAF1/CIP1 in Head and Neck Cancer Cells. Am J Chin Med. 33(03):405–414. doi:10.1142/S0192415X05003016.
Kim SH, Kim B, Kim SH, Jeong SJ, Sohn EJ, Jung JH, Lee MH. 2012. Brazilin induces apoptosis and G2/M arrest via inactivation of histone deacetylase in multiple myeloma U266 cells. J Agric. Food Chem. 60(39):9882–9889. doi:10.1021/jf302527p.
Konkimalla VB, McCubrey JA, Efferth T. 2009. The role of downstream signaling pathways of the epidermal growth factor receptor for Artesunate’s activity in cancer cells. Curr Cancer Drug Targets. 9(1):72–80.
Korkaya H, Paulson A, Iovino F, Wicha MS. 2008. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene. 27(47):6120–6130. doi:10.1038/onc.2008.207.
Koury J, Zhong L, Hao J. 2017. Targeting Signaling Pathways in Cancer Stem Cells for Cancer Treatment. Stem Cells Int. 2017. doi:https://doi.org/10.1155/2017/2925869.
Kroschinsky F, Stölzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M, Schellongowski P, Intensive Care in Hematological and Oncological Patients (iCHOP) Collaborative Group. 2017. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care. 21(1):89. doi:10.1186/s1305401716781.
Kuhn M, Szklarczyk D, PletscherFrankild S, Blicher TH, Von Mering C, Jensen LJ, Bork P. 2014. STITCH 4: Integration of proteinchemical interactions with user data. Nucleic Acids Res. 42(D1). doi:10.1093/nar/gkt1207.
Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M, Soria JC, Massard C, Lévy C, Arnedos M, LacroixTriki M, et al. 2016. Mutational Profile of Metastatic Breast Cancers: A Retrospective Analysis. PLoS Med. 13(12):e1002201. doi:10.1371/journal.pmed.1002201. URL
Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT. 2012. Role of Epidermal Growth Factor Receptor in Breast Cancer. Breast Cancer Res Treat. 136(2). doi:10.1007/s1054901222899.
Meiyanto E, Lestari B, Sugiyanto RN, Jenie RI, Utomo RY, Sasmito E, Murwanti R. 2019. Caesalpinia sappan L. heartwood ethanolic extract exerts genotoxic inhibitory and cytotoxic effects. Orient Pharm Exp Med. 19(1):27–36. doi:10.1007/s135960180351 9.
Merkhofer EC, Cogswell P, Baldwin AS. 2010. Her2 activates NFκB and induces invasion through the canonical pathway involving IKKα. Oncogene. 29(8):1238– 1248. doi:10.1038/onc.2009.410.
Naik Bukke A, Nazneen Hadi F, Babu KS, shankar PC. 2018. In vitro studies data on anticancer activity of Caesalpinia sappan L. heartwood and leaf extracts on MCF7 and A549 cell lines. Data Brief. 19:868–877. doi:10.1016/j.dib.2018.05.050.
Nirmal NP, Rajput MS, Prasad RG, Ahmad M. 2015. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac J Trop Med. 8(6):421–430. doi:10.1016/j.apjtm.2015.05.014.
Nurzijah I, Putri DDP, Rivanti E, Meiyanto E. 2012. Secang (Caesalpinia sappan L.) Heartwood Ethanolic Extract Shows Activity as Doxorubicin Cochemotherapeutic Agent by Apoptotis Induction on T47D Breast Cancer Cells. Indones J Cancer Chemoprevention. 3(2):376–383. doi:10.14499/indonesianjcanchemoprev3iss2pp376 383.
Oak PS, Kopp F, Thakur C, Ellwart JW, Rapp UR, Ullrich A, Wagner E, Knyazev P, Roidl A. 2012. Combinatorial treatment of mammospheres with trastuzumab and salinomycin efficiently targets HER2positive cancer cells and cancer stem cells. Int J Cancer. 131(12):2808–2819. doi:10.1002/ijc.27595.
Piggott L, Omidvar N, Pérez SM, Eberl M, Clarkson RW. 2011. Suppression of apoptosis inhibitor cFLIP selectively eliminates breast cancer stem cell activity in response to the anticancer agent, TRAIL. Breast Cancer Res. 13(5):R88. doi:10.1186/bcr2945.
Rachmady R, Muntafiah L, Rosyadi F, Sholihah I, Handayani S, Jenie RI. 2016. Antiproliferative Effect of Secang Heartwood Ethanolic Extract (Caesalpinia sappan L.) on HER2Positive Breast Cancer Cells. Indones J Cancer Chemoprevention. 7(1):1– 5. doi:10.14499/indonesianjcanchemoprev7iss1pp1 5.
Rivanti E, Shabrina BA, Nurzijah I, Ayu C, Hermawan A. 2016. Heartwood of Secang (Caesalpinia sappan L.) Ethanolic Extract Show Selective Cytotoxic Activities on T47D and Widr Cells But Not on Hela Cells. Indones J Cancer Chemoprevention. 7(2):60–67. doi:10.14499/indonesianjcanchemoprev7iss2pp60 67.
Shah D, Osipo C. 2016. Cancer stem cells and HER2 positive breast cancer: The story so far. Genes Dis. 3(2):114–123. doi:10.1016/j.gendis.2016.02.002.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. doi:10.1101/gr.1239303.
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, HuertaCepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C. 2015. STRING v10: proteinprotein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–452. doi:10.1093/nar/gku1003.
Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. 2017. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 45(W1):W130–W137. doi:10.1093/nar/gkx356.
Wang R, Lv Q, Meng W, Tan Q, Zhang S, Mo X, Yang X. 2014. Comparison of mammosphere formation from breast cancer cell lines and primary breast tumors. J Thorac Dis. 6(6):829–837. doi:10.3978/j.issn.2072 1439.2014.03.38.
DOI: https://doi.org/10.22146/ijbiotech.63510
Article Metrics
Abstract views : 2847 | views : 2207Refbacks
- There are currently no refbacks.
Copyright (c) 2021 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.