Reaction kinetics of lactic acid fermentation from bitter cassava (Manihot glaziovii) starch by Lactobacillus casei
Setiyo Gunawan(1*), Nurul Rahmawati(2), Rona Bening Larasati(3), Ira Dwitasari(4), Hakun Wirawasista Aparamarta(5), Tri Widjaja(6)
(1) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Keputih, Kota Surabaya, Jawa Timur 60111
(2) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Keputih, Kota Surabaya, Jawa Timur 60111
(3) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Keputih, Kota Surabaya, Jawa Timur 60111
(4) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Keputih, Kota Surabaya, Jawa Timur 60111
(5) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Keputih, Kota Surabaya, Jawa Timur 60111
(6) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Keputih, Kota Surabaya, Jawa Timur 60111
(*) Corresponding Author
Abstract
One of the utilizations of bitter cassava is modified cassava flour (Mocaf) production using the fermentation process by Lactobacillus casei. The Mocaf has potential as the future of food security products. It has a characteristic property similar to wheat flour. Lactic acid was also produced as a by‐product during fermentation. After 40 h of fermentation, the proximate composition content of Mocaf was lactic acid content of 0.000928 g/L, hydrogen cyanide levels of 0.02 ppm, starch content of 59.13%, amylose content of 12.98% and amylopectin content of 46.15%. In the scaling‐up process from a laboratory scale to a pilot and industrial scale, modeling is needed. There are five equation models used to describe the kinetic reactions of lactic acid from bitter cassava starch: Monod, Moser, Powell, Blackman, and Product Inhibitor. Each parameter was being searched by a fitting curve using sigmaplot 12.0. The best result in terms of the highest R2 (0.65913) was obtained in the Powell equation with the value of µmax of 1.668/h, Ks of 123.4 g/L, and maintenance rate (m) of 4.672. The kinetic data obtained can be used to design biochemical reactors for industrial scale Mocaf flour production.
Keywords
Full Text:
PDFReferences
AlcázarAlay SC, Meireles MAA. 2015. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci Technol. 35(2):215–236. doi:10.1590/1678457X.6749.
Alvarez MM, AguirreEzkauriatza EJ, RamírezMedrano A, RodríguezSánchez Á. 2010. Kinetic analysis and mathematical modeling of growth and lactic acid production of Lactobacillus casei var. rhamnosus in milk whey. J Dairy Sci. 93(12):5552–5560. doi:10.3168/jds.20103116.
AOAC. 2005. Official Methods of Analysis of AOAC International. Gaithersburg, Md.: AOAC International.
Bai DM, Wei Q, Yan ZH, Zhao XM, Li XG, Xu SM. 2003. Fedbatch fermentation of Lactobacillus lactis for hyperproduction of Llactic acid. Biotechnol Lett. 25(21):1833–1835. doi:10.1023/A:1026276925649.
Farinde EO, Obatolu V, Oyarekua M, Adeniran HA, Ejoh SI, Olanipekun O. 2010. Physical and microbial properties of fruit flavoured fermented cowmilk and soy milk ( yoghurtlike ) under different temperature of storage . Afr J Food Sci. 1(5):120–127.
GEA. 2006. Analytical methods A titratable acidity. URL https://www.gea.com/en/binaries/A%2019%20a%2 0%20Titratable%20Acidity_tcm1130930.pdf.
Gunawan S, Aparamarta HW, Anindita BP, Antari AT. 2019. Effect of fermentation time on the quality of modified gadung flour from gadung tuber (Dioscorea hispida Dennst.). IOP Conference Series: Materials Science and Engineering 673:012002. doi:10.1088/1757899x/673/1/012002.
Gunawan S, Istighfarah Z, Aparamarta HW, Syarifah F, Dwitasari I. 2017. Utilization of modified cassava flour and its byproducts. In: Handbook on Cassava: Production, Potential Uses and Recent Advances, chapter 14. Nova Science Publishers, Inc. p. 271–296.
Gunawan S, Widjaja T, Zullaikah S, Ernawati L, Istianah N, Aparamarta HW, Prasetyoko D. 2015. Effect of fermenting cassava with Lactobacillus plantarum, Saccharomyces cereviseae, and Rhizopus oryzae on the chemical composition of their flour. Int Food Res J. 22(3):1280–1287.
Gunawan S, Wirawasista Aparamarta H, Zarkasie IM, Prihandini WW. 2018. Effect of initial bacteria cells number and fermentation time on increasing nutritive value of sago flour. Mal J Fund Appl Sci. 14(2):246– 250. doi:10.11113/mjfas.v14n2.941.
Istianah N, Ernawati L, Anal AK, Gunawan S. 2018. Application of modified sorghum flour for improving bread properties and nutritional values. Int Food Res J. 25(1):166–173.
Istianah N, Gunawan S. 2017. Kinetika Fermentasi Asam Laktat dari Tepung Sorgum Menggunakan Yeast dan L. Plantarum. Jurnal Rekayasa Bahan Alam dan Energi Berkelanjutan. 1(2):49–55.
Krischke W, Schröder M, Trösch W. 1991. Continuous production of llactic acid from whey permeate by immobilized Lactobacillus casei subsp. casei. Appl Food Biotechnol. 34(5):573–578. doi:10.1007/BF00167901.
Mahanta DJ, Borah M, Saikia P. 2014. Study on Kinetic Models for analysing the bacterial growth rate. AIJRSTEM 8(1):2328–3491.
Martens BM, Gerrits WJ, Bruininx EM, Schols HA. 2018. Amylopectin structure and crystallinity explains variation in digestion kinetics of starches across botanic sources in an in vitro pig model. J Anim Sci Biotechnol. 9(1). doi:10.1186/s4010401803038.
Mirdamadi S, Sadeghi H, Sharafi N, Fallahpour M, Mohseni FA, Bakhtiari MR. 2002. Comparison of lactic acid isomers produced by fungal and bacterial strains. Iran Biomed. J. 6(23):69–75.
Narayanan N, Roychoudhury PK, Srivastava A. 2004. Isolation of adh mutant of Lactobacillus rhamnosus for production of L(+) Lactic acid. Electron J Biotechnol. 7(1):79–91. doi:10.2225/vol7issue1fulltext7.
Nebiyu A, Getachew E. 2011. Soaking and drying of cassava roots reduced cyanogenic potential of three cassava varieties at Jimma, Southwest Ethiopia. Afr J Biotechnol. 10(62):13465–13469. doi:10.5897/ajb10.2636.
Panesar PS, Kennedy JF, Knill CJ, Kosseva M. 2010. Production of L(+) Lactic Acid using Lactobacillus casei from Whey. Braz Arch Biol Technol. 53(1):219–226. doi:10.1590/S151689132010000100027.
Rezvani F, Ardestani F, Najafpour G. 2017. Growth kinetic models of five species of Lactobacilli and lactose consumption in batch submerged culture. Braz J Microbiol. 48(2):251–258. doi:10.1016/j.bjm.2016.12.007.
Setiarto RHB, Nunuk W. 2017. Effect of Lactic Acid Bacteria Fermentation and AutoclavingCooling Cycle for The Level of Resistant Starch of Modified Purple Sweet Potato Flour (Ipomea Batatas Var Ayamurasaki). Warta IHP. 34(1):26–35.
SNI. 2011. Modified cassava flour. Solomons TWG, Craig BF. 2011. Organic Chemistry. 10th Edition. New Jersey: John Wiley & Sons, Inc.
Suharyono S, Rizal S, Kurniadi M, et al. 2012. Pertumbuhan L. casei pada berbagai lama fermentasi minuman sinbiotik dari ekstrak cincau hijau (Premna oblongifolia Merr.). Jurnal Teknologi Hasil Pertanian. 5(2):117–128. doi:10.20961/jthp.v0i0.13564.
Taleghani HG, Najafpour GD, Ghoreyshi AA. 2016. A study on the effect of parameters on lactic acid production from whey. Pol J Chem Technol. 18(1):58– 63. doi:10.1515/pjct20160010.
Zacharof M, Lovitt R, Ratanapongleka K, et al. 2009. Optimization of Growth Conditions for Intensive Propagation, Growth Development and Lactic Acid Production of Selected Strains of’Lactobacilli’. Engineering Our Future: Are We up to the Challenge?: 27 30 September 2009, Burswood Entertainment Complex p. 1830–1839.
DOI: https://doi.org/10.22146/ijbiotech.54119
Article Metrics
Abstract views : 4156 | views : 3378Refbacks
- There are currently no refbacks.
Copyright (c) 2021 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.