The Role of Renewable Energy in ReducingCarbon Emissions in Cirebon District

Agni Nurfalah(1*), Bakti Setiawan(2), Nugroho Dewayanto(3)
(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(3) Universitas Gadjah Mada
(*) Corresponding Author
Abstract
The adverse effects of the use of fossil energy such as global warming make people slowly decrease the use of fossil energy including in the electric power generation sector. Emissions from burning fossil fuels such as carbon dioxide are one of the components that make up and dominate the composition of greenhouse gases. It is this greenhouse gas that prevents the sun's heat from being reflected back into the atmosphere, so that it accumulates over many years which causes the temperature of the earth's surface to increase.
Slowly the use of fossil energy is stopped and replaced with new renewable energy which produces less greenhouse gases. In meeting the demand for electricity supply, Cirebon Regency is still relying on Steam Coal Power Plants to supply electricity demand. According to projection, Cirebon's total electricity demand will be 109.860,28 GWh by 2050. If Cirebon still continues to use Steam Coal Power Plants until 2050 it's estimated that it will emit 100.489.721,74 tons of carbon dioxide emissions.
Cirebon Regency has alternative energy potential from municipal solid waste (MSW) that can be utilized. Every day, every person in Cirebon Regency can produce 0,541 kg of waste. From the observations, the electrical energy that can be generated and utilized from waste until 2050 is 8.360,45 GWh, of which 2.462,34 GWh is generated from organic waste and 5.898,12 GWh is generated from combustible waste.
The electrical energy that can be generated from city waste is sufficient for 7,61% of the electricity needs of Cirebon Regency. With an energy mix scheme between PLTU and waste-based power plants, total carbon dioxide emissions can be reduced by 3,05%.Keywords
Full Text:
PDFReferences
Atelge, M. R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D. D., Chang, S. W., Atabani, A. E., Al-Muhtaseb, A. H., & Unalan, S. (2020). Biogas Production from Organic Waste: Recent Progress and Perspectives. Springer, 11, 22. https://doi.org/10.1007/s12649-018-00546-0 Bianco, I., Panepinto, D., & Zanetti, M. (2021). Environmental Impacts of Electricity from Incineration and Gasification: How the LCA Approach Can Affect the Results. Sustainability, 14, 12. https://doi.org/10.3390/su14010092 Chiew, Y. L., Spangberg, J., Baky, A., Hansson, P. A., & Jonsson, H. (2014). Environmental Impact of Recycling Digested Food Waste as a Fertilizer in Agriculture-A Case Study. Elsevier, 95, 15. http://dx.doi.org/10.1016/j.resconrec.2014.11.015 DLHK. (2016). Masterplan Pengelolaan Sampah Kabupaten Cirebon. Esye, Y., & Iswal, G. S. (2021). Analisis Pembangkit Listrik Tenaga Sampah dengan Metode Sanitary Landfill di Bantargebang. Sains & Teknologi, 11, 11. https://unsada.e-journal.id/jst/article/view/163/122 Hakim, D. L., & Valentino, N. (2019). Tekno Ekonomi Pemanfaatan Biogas Berbasis POME untuk Pembangkit Listrik, Bahan Bakar Boiler dan BioCNG. Sains dan Teknologi, 18, 9. https://jst.ejournal.unri.ac.id/index.php/JST/article/view/7589/6615 IRENA. (2022). Renewable Power Generation Costs in 2021. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Power_Generation_Costs_2021.pdf?rev=34c22a4b244d434da0accde7de7c73d8 Izan, K. (2022). Produksi Sampah di Kabupaten Cirebon Capai 1200 ton per hari. ANTARAJABAR. https://jabar.antaranews.com/berita/391597/produksi-sampah-di-kabupaten-cirebon-capai-1200-ton-per-hari?page=all Muharrir, & Hajar, I. (2019). Analisis Pengaruh Beban Terhadap Efisiensi Generator Unit 2 PLTP PT Indonesia Power UPJP Kamojang. KILAT, 8, 93. https://doi.org/10.33322/kilat.v8i2.643 Pratama, I. P. A. Y., Winaya, I. N. S., & Suryawan, I. G. P. A. (2019). Uji Reaktor Gasifikasi Downdraft Biomassa Sampah Kota. METTEK, 5, 9. https://doi.org/10.24843/METTEK.2019.v05.i02.p08 Samnur, & Irfan, A. M. (2011). Analisis Kesetaraan Nilai Kalor LPG dengan Biogas dari Biodigester Skala Rumah Tangga. Teknologi, 14, 8. https://ojs.unm.ac.id/teknologi/article/view/24018/12212 Samsinar, R., & Anwar, K. (2018). Studi Perencanaan Pembangkit Listrik Tenaga Sampah Kapasitas 115 kW (Studi Kasus Kota Tegal). Elektum, 15, 8. https://jurnal.umj.ac.id/index.php/elektum/article/view/3194/2551 Suprihatin, Indrasti, N. S., & Romli, M. (2012). Potensi Penurunan Emisi Gas Rumah Kaca Melalui Pengomposan Sampah. Teknik Industri Pertanian, 18, 8. https://journal.ipb.ac.id/index.php/jurnaltin/article/view/4202 Szabo, G., Fazekas, I., Szabo, S., Szabo, G., Buday, T., Paladi, M., Kisari, K., & Kerenyi, A. (2014). The Carbon Footprint of a Biogas Power Plant. Environmental Engineering and Management, 13, 8. http://dx.doi.org/10.30638/eemj.2014.322

Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2025 ASEAN Journal of Systems Engineering

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Universitas Gadjah Mada