The Role of TNF-α (Tumor Necrosis Factor-alpha) in Pulmonary Tuberculosis
Wiwit Sulistyasmi(1*), Eka Noviya Fuzianingsih(2), Rachmad Bayu Kuncara(3)
(1) Department of Health Analyst, Politeknik Kesehatan Kementerian Kesehatan Bengkulu
(2) Department of Medical Laboratory Technology, STIKes Karya Putra Bangsa
(3) 
(*) Corresponding Author
Abstract
Background: Tuberculosis (TB) remains a primary global health concern, with Indonesia accounting for approximately 10% of international cases. Tumor necrosis factor-alpha (TNF-α) plays a crucial role in the immune response against Mycobacterium tuberculosis, particularly in pulmonary tuberculosis (TB).
Method: This article is a narrative literature review that examines the role of tumor necrosis factor-alpha (TNF-α) in pulmonary tuberculosis.
Result: This pro-inflammatory cytokine is essential for activating macrophages, promoting phagolysosome fusion, and supporting the formation and maintenance of granulomas—immune structures critical for containing infection. However, dysregulated TNF-α expression can be detrimental: excessive levels contribute to inflammation and lung tissue damage, while insufficient production—such as that induced by TNF-α inhibitor therapy—can lead to reactivation of latent TB. This narrative review examines the biosynthesis, immunological functions, and regulatory mechanisms of TNF-α in the context of pulmonary tuberculosis, highlighting its dual role in protective immunity and immunopathology.
Conclusion: A deeper understanding of TNF-α modulation may inform the development of targeted, host-directed therapies that improve treatment outcomes while minimizing tissue damage.
Keywords
Full Text:
PDFReferences
- WHO. Global tuberculosis report. World Health Organ, Geneva. Published online 2024.
- Sugiyono RI, Naysilla AM, Susanto NH, et al. Treatment outcomes of pulmonary TB in adults in Indonesia. IJTLD OPEN. 2025;2(3):145-152.
- Vu A, Glassman I, Campbell G, et al. Host Cell Death and Modulation of Immune Response against Mycobacterium tuberculosis Infection. Int J Mol Sci. 2024;25(11). doi:10.3390/ijms25116255
- Zhuang L, Yang L, Li L, Ye Z, Gong W. Mycobacterium tuberculosis: immune response, biomarkers, and therapeutic intervention. MedComm. 2024;5(1):1-33. doi:10.1002/mco2.419
- Kumari P, Russo AJ, Shivcharan S, Rathinam VA. AIM2 in health and disease: Inflammasome and beyond. Immunol Rev. 2020;297(1):83-95. doi:10.1111/imr.12903
- Cechetto DF. Role of tumor necrosis factor-α in stroke. Stroke. 2001;32(8):1757-1758.
- Yuk JM, Kim JK, Kim IS, Jo EK. TNF in Human Tuberculosis: A Double-Edged Sword. Immune Netw. 2024;24(1):1-19. doi:10.4110/in.2024.24.e4
- Lyon SM, Rossman MD. Pulmonary Tuberculosis. Am Soc Microbiol. 2017;5(1):1-13. doi:10.1016/S0140-6736(01)22393-9
- Ramadhan MD, Aryati, Wulandari L. Profile of Pulmonary Tuberculosis Patients in Dr. Soetomo General Academic Hospital. Indones J Clin Pathol Med Lab. 2023;29(3):272-276. doi:10.24293/ijcpml.v29i3.2040
- Rahlwes KC, Dias BRS, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence. 2023;14(1). doi:10.1080/21505594.2022.2150449
- Mohammadnabi N, Shamseddin J, Emadi M, et al. Mycobacterium tuberculosis: The Mechanism of Pathogenicity, Immune Responses, and Diagnostic Challenges. J Clin Lab Anal. Published online 2024:e25122. doi:10.1002/jcla.25122
- Beutler B, Cerami A. The Biology of Cachectin/TNF -- A Primary Mediator of the Host Response. Annu Rev Immunol. 1989;7(1):625-655. doi:10.1146/annurev.iy.07.040189.003205
- Pennica D, Nedwin GE, Hayflick JS, et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature. 1984;312(5996):724-729. doi:10.1038/312724a0
- Rohleder N. Tumor Necrosis Factor-Alpha (TNF-Alpha). In: Encyclopedia of Behavioral Medicine. Springer International Publishing; 2020:2280-2281. doi:10.1007/978-3-030-39903-0_72
- Jang D in, Lee AH, Shin HY, et al. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int J Mol Sci. 2021;22(5):2719. doi:10.3390/ijms22052719
- Bradley J. TNF‐mediated inflammatory disease. J Pathol. 2008;214(2):149-160. doi:10.1002/path.2287
- Horiuchi T, Mitoma H, Harashima S i., Tsukamoto H, Shimoda T. Transmembrane TNF- : structure, function and interaction with anti-TNF agents. Rheumatology. 2010;49(7):1215-1228. doi:10.1093/rheumatology/keq031
- You K, Gu H, Yuan Z, Xu X. Tumor Necrosis Factor Alpha Signaling and Organogenesis. Front Cell Dev Biol. 2021;9. doi:10.3389/fcell.2021.727075
- Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3(9):745-756. doi:10.1038/nri1184
- Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci. 2002;27(1):19-26. doi:10.1016/S0968-0004(01)01995-8
- Bradley CA. Prophylactic TNF blockade reduces autoimmune toxicity. Nat Rev Drug Discov. 2019;18(7):500-500. doi:10.1038/d41573-019-00093-w
- Tang P, Hung MC, Klostergaard J. Human pro-Tumor Necrosis Factor Is a Homotrimer. Biochemistry. 1996;35(25):8216-8225. doi:10.1021/bi952182t
- Adrain C, Zettl M, Christova Y, Taylor N, Freeman M. Tumor Necrosis Factor Signaling Requires iRhom2 to Promote Trafficking and Activation of TACE. Science (80- ). 2012;335(6065):225-228. doi:10.1126/science 1214400
- Cavalcanti YVN, Brelaz MCA, Neves JKDAL, Ferraz JC, Pereira VRA. Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis. Pulm Med. 2012;2012. doi:10.1155/2012/745483
- Ruiz A, Palacios Y, Garcia I, Chavez-Galan L. Transmembrane TNF and Its Receptors TNFR1 and TNFR2 in Mycobacterial Infections. Int J Mol Sci. 2021;22(11):5461. doi:10.3390/ijms22115461
- Dostert C, Grusdat M, Letellier E, Brenner D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev. 2019;99(1):115-160. doi:10.1152/physrev.00045.2017
- 27. Coppola M, Villar-Hernández R, van Meijgaarden KE, et al. Cell-Mediated Immune Responses to in vivo-Expressed and Stage-Specific Mycobacterium tuberculosis Antigens in Latent and Active Tuberculosis Across Different Age Groups. Front Immunol. 2020;11:103. doi:10.3389/fimmu.2020.00103
- Yang S, Wang J, Brand DD, Zheng SG. Role of TNF-TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front Immunol. 2018;9(APR). doi:10.3389/fimmu.2018.00784
- Sinaga BYM, Amir Z. Tumor necrosis factor-alpha-308g/polymorphism associated with increased risk for pulmonary tuberculosis in Medan City, Indonesia. Open Access Maced J Med Sci. 2021;9(A):7-11. doi:10.3889/oamjms.2021.5559
- Robert M, Miossec P. Reactivation of latent tuberculosis with TNF inhibitors: critical role of the beta 2 chain of the IL-12 receptor. Cell Mol Immunol. 2021;18(7):1644-1651. doi:10.1038/s41423-021-00694-9
- Mirzaei A, Mahmoudi H. Evaluation of TNF-α cytokine production in patients with tuberculosis compared to healthy people. GMS Hyg Infect Control. 2018;13:1-5.
- Khelghati F, Rahmanian M, Eghbal E, et al. Risk of tuberculosis disease in patients receiving TNF-α antagonist therapy: A meta-analysis of randomized controlled trials. New Microbes New Infect. 2024;62(November). doi:10.1016/j.nmni.2024.101533
- Olsen A, Chen Y, Ji Q, et al. Targeting Mycobacterium tuberculosis tumor necrosis factor alpha-downregulating genes for the development of antituberculous vaccines. MBio. 2016;7(3):1-15. doi:10.1128/mBio.01023-15
- Malefane L, Maarman G. Post-tuberculosis lung disease and inflammatory role players: can we characterise the myriad inflammatory pathways involved to gain a better understanding? Chem Biol Interact. 2024;387(October 2023):110817. doi:10.1016/j.cbi.2023.110817
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Currently, Academic Hospital Journal indexed by:

View My Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License






