The Role of TNF-α (Tumor Necrosis Factor-alpha) in Pulmonary Tuberculosis

https://doi.org/10.22146/ahj.v7i2.106190

Wiwit Sulistyasmi(1*), Eka Noviya Fuzianingsih(2), Rachmad Bayu Kuncara(3)

(1) Department of Health Analyst, Politeknik Kesehatan Kementerian Kesehatan Bengkulu
(2) Department of Medical Laboratory Technology, STIKes Karya Putra Bangsa
(3) 
(*) Corresponding Author

Abstract


Background: Tuberculosis (TB) remains a primary global health concern, with Indonesia accounting for approximately 10% of international cases. Tumor necrosis factor-alpha (TNF-α) plays a crucial role in the immune response against Mycobacterium tuberculosis, particularly in pulmonary tuberculosis (TB).

Method: This article is a narrative literature review that examines the role of tumor necrosis factor-alpha (TNF-α) in pulmonary tuberculosis.

Result:  This pro-inflammatory cytokine is essential for activating macrophages, promoting phagolysosome fusion, and supporting the formation and maintenance of granulomas—immune structures critical for containing infection. However, dysregulated TNF-α expression can be detrimental: excessive levels contribute to inflammation and lung tissue damage, while insufficient production—such as that induced by TNF-α inhibitor therapy—can lead to reactivation of latent TB. This narrative review examines the biosynthesis, immunological functions, and regulatory mechanisms of TNF-α in the context of pulmonary tuberculosis, highlighting its dual role in protective immunity and immunopathology.

Conclusion: A deeper understanding of TNF-α modulation may inform the development of targeted, host-directed therapies that improve treatment outcomes while minimizing tissue damage.


Keywords


cytokine, mycobacterium tuberculosis, tuberculosis, and tumor necrosis factor-alpha

Full Text:

PDF


References

  1. WHO. Global tuberculosis report. World Health Organ, Geneva. Published online 2024.
  2. Sugiyono RI, Naysilla AM, Susanto NH, et al. Treatment outcomes of pulmonary TB in adults in Indonesia. IJTLD OPEN. 2025;2(3):145-152.
  3. Vu A, Glassman I, Campbell G, et al. Host Cell Death and Modulation of Immune Response against Mycobacterium tuberculosis Infection. Int J Mol Sci. 2024;25(11). doi:10.3390/ijms25116255
  4. Zhuang L, Yang L, Li L, Ye Z, Gong W. Mycobacterium tuberculosis: immune response, biomarkers, and therapeutic intervention. MedComm. 2024;5(1):1-33. doi:10.1002/mco2.419
  5. Kumari P, Russo AJ, Shivcharan S, Rathinam VA. AIM2 in health and disease: Inflammasome and beyond. Immunol Rev. 2020;297(1):83-95. doi:10.1111/imr.12903
  6. Cechetto DF. Role of tumor necrosis factor-α in stroke. Stroke. 2001;32(8):1757-1758.
  7. Yuk JM, Kim JK, Kim IS, Jo EK. TNF in Human Tuberculosis: A Double-Edged Sword. Immune Netw. 2024;24(1):1-19. doi:10.4110/in.2024.24.e4
  8. Lyon SM, Rossman MD. Pulmonary Tuberculosis. Am Soc Microbiol. 2017;5(1):1-13. doi:10.1016/S0140-6736(01)22393-9
  9. Ramadhan MD, Aryati, Wulandari L. Profile of Pulmonary Tuberculosis Patients in Dr. Soetomo General Academic Hospital. Indones J Clin Pathol Med Lab. 2023;29(3):272-276. doi:10.24293/ijcpml.v29i3.2040
  10. Rahlwes KC, Dias BRS, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence. 2023;14(1). doi:10.1080/21505594.2022.2150449
  11. Mohammadnabi N, Shamseddin J, Emadi M, et al. Mycobacterium tuberculosis: The Mechanism of Pathogenicity, Immune Responses, and Diagnostic Challenges. J Clin Lab Anal. Published online 2024:e25122. doi:10.1002/jcla.25122
  12. Beutler B, Cerami A. The Biology of Cachectin/TNF -- A Primary Mediator of the Host Response. Annu Rev Immunol. 1989;7(1):625-655. doi:10.1146/annurev.iy.07.040189.003205
  13. Pennica D, Nedwin GE, Hayflick JS, et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature. 1984;312(5996):724-729. doi:10.1038/312724a0
  14. Rohleder N. Tumor Necrosis Factor-Alpha (TNF-Alpha). In: Encyclopedia of Behavioral Medicine. Springer International Publishing; 2020:2280-2281. doi:10.1007/978-3-030-39903-0_72
  15. Jang D in, Lee AH, Shin HY, et al. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int J Mol Sci. 2021;22(5):2719. doi:10.3390/ijms22052719
  16. Bradley J. TNF‐mediated inflammatory disease. J Pathol. 2008;214(2):149-160. doi:10.1002/path.2287
  17. Horiuchi T, Mitoma H, Harashima S i., Tsukamoto H, Shimoda T. Transmembrane TNF- : structure, function and interaction with anti-TNF agents. Rheumatology. 2010;49(7):1215-1228. doi:10.1093/rheumatology/keq031
  18. You K, Gu H, Yuan Z, Xu X. Tumor Necrosis Factor Alpha Signaling and Organogenesis. Front Cell Dev Biol. 2021;9. doi:10.3389/fcell.2021.727075
  19. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3(9):745-756. doi:10.1038/nri1184
  20. Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci. 2002;27(1):19-26. doi:10.1016/S0968-0004(01)01995-8
  21. Bradley CA. Prophylactic TNF blockade reduces autoimmune toxicity. Nat Rev Drug Discov. 2019;18(7):500-500. doi:10.1038/d41573-019-00093-w
  22. Tang P, Hung MC, Klostergaard J. Human pro-Tumor Necrosis Factor Is a Homotrimer. Biochemistry. 1996;35(25):8216-8225. doi:10.1021/bi952182t
  23. Adrain C, Zettl M, Christova Y, Taylor N, Freeman M. Tumor Necrosis Factor Signaling Requires iRhom2 to Promote Trafficking and Activation of TACE. Science (80- ). 2012;335(6065):225-228. doi:10.1126/science 1214400
  24. Cavalcanti YVN, Brelaz MCA, Neves JKDAL, Ferraz JC, Pereira VRA. Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis. Pulm Med. 2012;2012. doi:10.1155/2012/745483
  25. Ruiz A, Palacios Y, Garcia I, Chavez-Galan L. Transmembrane TNF and Its Receptors TNFR1 and TNFR2 in Mycobacterial Infections. Int J Mol Sci. 2021;22(11):5461. doi:10.3390/ijms22115461
  26. Dostert C, Grusdat M, Letellier E, Brenner D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev. 2019;99(1):115-160. doi:10.1152/physrev.00045.2017
  27. 27. Coppola M, Villar-Hernández R, van Meijgaarden KE, et al. Cell-Mediated Immune Responses to in vivo-Expressed and Stage-Specific Mycobacterium tuberculosis Antigens in Latent and Active Tuberculosis Across Different Age Groups. Front Immunol. 2020;11:103. doi:10.3389/fimmu.2020.00103
  28. Yang S, Wang J, Brand DD, Zheng SG. Role of TNF-TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front Immunol. 2018;9(APR). doi:10.3389/fimmu.2018.00784
  29. Sinaga BYM, Amir Z. Tumor necrosis factor-alpha-308g/polymorphism associated with increased risk for pulmonary tuberculosis in Medan City, Indonesia. Open Access Maced J Med Sci. 2021;9(A):7-11. doi:10.3889/oamjms.2021.5559
  30. Robert M, Miossec P. Reactivation of latent tuberculosis with TNF inhibitors: critical role of the beta 2 chain of the IL-12 receptor. Cell Mol Immunol. 2021;18(7):1644-1651. doi:10.1038/s41423-021-00694-9
  31. Mirzaei A, Mahmoudi H. Evaluation of TNF-α cytokine production in patients with tuberculosis compared to healthy people. GMS Hyg Infect Control. 2018;13:1-5.
  32. Khelghati F, Rahmanian M, Eghbal E, et al. Risk of tuberculosis disease in patients receiving TNF-α antagonist therapy: A meta-analysis of randomized controlled trials. New Microbes New Infect. 2024;62(November). doi:10.1016/j.nmni.2024.101533
  33. Olsen A, Chen Y, Ji Q, et al. Targeting Mycobacterium tuberculosis tumor necrosis factor alpha-downregulating genes for the development of antituberculous vaccines. MBio. 2016;7(3):1-15. doi:10.1128/mBio.01023-15
  34. Malefane L, Maarman G. Post-tuberculosis lung disease and inflammatory role players: can we characterise the myriad inflammatory pathways involved to gain a better understanding? Chem Biol Interact. 2024;387(October 2023):110817. doi:10.1016/j.cbi.2023.110817



DOI: https://doi.org/10.22146/ahj.v7i2.106190

Article Metrics

Abstract views : 1116 | views : 494

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Authors

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Currently, Academic Hospital Journal indexed by:

google-scholar garuda

dimensions logo

 


 

Web
    Analytics

View My Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License