UJI TOKSISITAS SODIUM SIANIDA (NaCN) PADA BEBERAPA SPESIES IKAN AIR TAWAR: REVIEW (The Toxicity Test of Sodium Cyanide (NaCN) to Some Species of Freshwater Fish: A Review)
Siti Muyassaroh(1*), Indah Rahmatiah Siti Salami(2)
(1) Fakultas Pertanian, Universitas Abdurachman Saleh, Jalan PB Sudirman No.07, Situbondo, 68312.
(2) Program Studi Magister Teknik Lingkungan, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Jalan Ganesha No.10, Bandung, 40132.
(*) Corresponding Author
Abstract
Abstrak
Sianida telah digunakan sebagai senyawa toksik selama beberapa dekade untuk penangkapan ikan. Pengetahuan para nelayan yang rendah dapat menyebabkan kelebihan dosis penggunaan senyawa sianida. Hal ini dapat menyebabkan kematian ikan dan bahkan kerusakan terumbu karang. Sodium sianida tidak bersifat bioakumulasi dan biomagnifikasi berdasarkan nilai Kow-nya dan sebagian besar metabolit dikeluarkan melalui urin dalam bentuk thiosianat, SCN- (60-80%), 2-aminothiazoline-4-carboxylic acid (ATCA) atau 2-iminothiazolidine-4-carboxylic acid, ITCA (15%), serta gas HCN dan CO2. Biomarker organisme yang terpapar sianida yaitu kandungan CN-, SCN-,ATCA atau ITCA pada urin dan darah; perubahan histopatologis di limpa, hepato-renal dan ginjal; penurunan aktivitas enzim katalase pada jaringan hati, insang, otak, dan otot ikan; perubahan aktivitas laktat dehydrogenase (LDH) dan suksinat dehydrogenase (SDH), tingkah laku, laju respirasi, dan metabolit (asam piruvat dan asam laktat). Akan tetapi, aktivitas enzim dan struktur histopatologis kembali normal setelah pemulihan selama 14 hari di medium bebas NaCN. Paparan NaCN juga dapat menyebabkan perubahan kecepatan renang dan durasi surfacing behavior. Konsentrasi sianida di lingkungan tidak bisa diabaikan, sebab dimungkinkan adanya efek sinergis dan juga penghambatan sistem enzim katalase, yang pada akhirnya terjadi kerentanan organisme akuatik terhadap toksisitas sianida. Labeo rohita merupakan spesies ikan air tawar yang paling sensitif terhadap paparan NaCN, dengan nilai LC50 sebesar 0,32 mg/L (tanpa melihat jenis aliran yang digunakan).
Abstract
Cyanide has been used as a toxic compound for decades for fishing. Lack of knowledge of fishermen can lead to overdosing use of a compound. This can lead to fish kills and even damage the coral reefs. Sodium cyanide is not bioaccumulative and biomagnificative based on the value of Kow and most metabolites are excreted in the urine in the form of SCN- (60-80%), 2-aminothiazoline-4-carboxylic acid, ATCA or 2-iminothiazolidine-4-carboxylic acid, ITCA (15%), as well as HCN gas and CO2. Biomarkers organisms are exposed cyanide content of CN-, SCN-, ATCA or ITCA on urine and blood; histopathological changes in spleen, hepato-renal and kidney; decreased activity of catalase enzyme in the liver, gills, brain, and muscles of fish; lactate dehydrogenase (LDH) and succinate dehydrogenase (SDH) activity changes, behavioral, respiratory rate, and metabolites (pyruvic acid and lactic acid). However, the enzyme activity and histopathological structure back to normal after recovery for 14 days at NaCN-free medium. NaCN exposure can also cause changes in swimming speed and duration of surfacing behavior. The concentration of cyanide in the environment can not be ignored, because it is possible the existence of a synergistic effect and also the inhibition of catalase enzyme system, which eventually happened vulnerability of aquatic organisms to cyanide toxicity. Labeo rohita is a freshwater fish species are most sensitive to exposure to NaCN, with LC50 values of 0.32 mg / L (regardless of the type of flow used).
Keywords
Full Text:
PDFReferences
Al-Ghanim, K.A., dan Mahboob, S., 2012. Effect of Sodium Cyanide on The Activities of Some Enzymes and Metabolites in Clarias gariepinus. African J. Biotechnol., 11(41):9849-9854
Anonim, 2010. Toxicological Review of Hydrogen Cyanide and Cyanide Salt. United State Environmental Protection Agency (US EPA). Washington DC.
David, M., Munaswamy, V., Halappa, R., dan Marigoudar, S.R., 2008. Impact of Sodium Cyanide on Catalase Activity in The Fresh Water Exotic Carp, Cyprinus caprio (Linnaeus). Pesticide Biochem. & Physiol., 92:15-18.
David, M., Ramesh, H., Patil, V.K., Marigoudar, S.R., dan Chebbi, S.G., 2010. Sodium Cyanide-Induced Modulations in The Activities of Some Oxidative Enzymes and Metabolites in the Fingerlings of Cyprinus carpio (Linnaeus). Toxicol. & Env. Chem., 92(10):1841-1849.
David, M., dan Kartheek, R.M., 2014. Sodium Cyanide Induced Histopathological Changes in Kidney of Fresh Water Fish Cyprinus caprio Under Sublethal Exposure. Int. J. Pharmaceut., Chem. & Biological Sc., 4(3):634-639.
David, M., dan Kartheek, R.M., 2015a. Histopathological Alteration in Spleen of Fresh Water Fish Cyprinus carpio Exposed to Sublethal Concentration of Sodium Cyanide. Open Veterinary J., 5(1):1-5.
David, M., dan Kartheek, R.M., 2015b. In Vivo Studies on Hepato-renal Impairments in Freshwater Fish Cyprinus caprio Following Exposure to Sublethal Concentration of Sodium Cyanide. Environ. Sci. Pollut. Res., DOI 10.1007/s11356-015-5286-9.
Dube, P.N., dan Hosetti, B.B., 2010a. Behaviour Surveillance and Oxygen Consumption in The Freshwater Fish Labeo rohita (Hamilton) Exposed to Sodium Cyanide. Biotechnol. Animal Husbandry. 26(1-2):91-203.
Dube, P.N., dan Hosetti, B.B., 2010b. Respiratory Distress and Behavioural Anomalies of Indian Major Carp, Labeo rohita (Hamilton) Exposed to Sodium Cyanide. Recent Research in Sci. & Technol., 2(2):42-48.
Dube, P.N., Alavandi, S., dan Hosetti, B.B., 2013. Effect of Exposure to Sublethal Concentrations of Sodium Cyanide on The Carbohydrate Metabolism of The Indian Major Carp Labeo rohita (Hamilton, 1822). Presq. Vet. Bras., 33(7):914-919.
Eisler, R., 1991. Cyanide Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. Biological Report. 85:1.23.
Gacsi, M., Czegeny, I., Nagy, G., dan Banfalvi, G., 2005. Survival of Fish Upon Removal of Cyanide From Water. Env. Res., 97:293-299.
Hebert, C.D., 1993. Sodium Cyanide: Administered in Drinking Water to F344/N Rats and B6C3F1 Mice. United States Department of Health and Human Services, Public Health Services, National Institues of Health. Washington DC.
Kang, I.J., Moroishi, J., Nakamura, A., Nagafuchi, K., Kim, S.G., dan Oshima, Y., 2009. Biological Monitoring for Detection of Toxic Chemicals in Water by the Swimming Behaviour of Small Freshwater Fish. Journal Faculty of Agriculture Kyushu University, 54(1):209-214.
Lanno, R.P., dan Dixon, D.G., 1996. The Comparative Chronic Toxicity of Thiocyanate and Cyanide to Rainbow Trout. Aquatic Toxicology,36:177-187.
Logue, B.A., Kirschten, N.P., Petrikovics, I., Moser, MA., Rockwood, G.A., dan Baskin, S.I., 2005. Determination of The Cyanide Metabolite 2-aminothiazoline-4-carboxylic acid in Urine and Plasma by Gas Chromatography-mass Spectrometry. J. Chromat. B., 819:237-244.
Manjunatha, B., Mohiddin, G.J., Ortiz, J., dan Selvanayagam, M., 2014. Effect of Exposure to Sublethal Concentrations of Sodium Cyanide on The Biochemical Aspects in Liver of The Fresh Water Fish, Labeo rohita. Int. J. Pharmacol. & Pharmaceutical Sci.,. 2(1):7-15.
Pet-Soede, L., dan Erdmann, M., 1998. An Overview and Comparison of Destructive Fishing Practice in Indonesia. SPC Live Reef Information Bulletin, 4:28-36
Prashanth, M.S., Sayeswara, H.A., dan Goudar, M.A., 2011. Effect of Sodium Cyanide on Behaviour and Respiratory Surveillance in Freshwater Fish, Labeo rohita (Hamilton). Recent Research in Sci. & Technol., 3(2):24-30.
DOI: https://doi.org/10.22146/jml.23117
Article Metrics
Abstract views : 7600 | views : 5909Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Jurnal Manusia dan Lingkungan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JML Indexed by:
View My Stats