Current Trend of MOFs Incorporated Membranes for Advanced Wastewater Treatment

https://doi.org/10.22146/ajche.83845

Dani Puji Utomo(1), Tutuk Djoko Kusworo(2*), Andri Cahyo Kumoro(3), Budiyono Budiyono(4), Tonni Agustiono Kurniawan(5)

(1) Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia 50275
(2) Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia 50275
(3) Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia 50275
(4) Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia 50275
(5) College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People’s Republic of China
(*) Corresponding Author

Abstract


Membrane technology has gained attention in wastewater treatment due to its great potential for producing high-grade water products for reuse. The membrane also effectively removes persistent pollutants in water effluent. However, their application is constrained by low productivity due to fouling formation. Incorporating functionalized nanoparticles into polymeric membranes has attracted much attention due to the improved membrane performance and additional features. Metal-organic frameworks (MOFs) incorporated into polymeric membranes have been widely applied in reverse osmosis (RO), forward osmosis (FO), nanofiltration (NF), and microfiltration (MF) for water and wastewater treatment. This short review presented recent findings, fabrication methods, and a systematic understanding of transport mechanisms under various operating conditions. This study also focused on several important parameters, such as improving physicochemical properties, membrane features, and performance enhancement in wastewater treatment. The reported studies show that MOFs incorporated membranes have reached >95% organic pollutants and 100% suspended solids. The membrane durability was also enhanced up to 140%, and the flux recovery can be maintained at 98% after several cycles. Even some MOFs, such as ZIF-8 and UiO-66, exhibited excellent performance in harsh conditions (pH < 4). The prospects and challenges of MOFs-incorporated membranes in industrial applications were also provided in this study.


Keywords


Antifouling, Metal-organic frameworks, Membrane, Wastewater, Water purification

Full Text:

PDF


References

Abdelhameed, R. M., Abdel-Gawad, H., & Emam, H. E., 2021. “Macroporous Cu-MOF@cellulose acetate membrane serviceable in selective removal of dimethoate pesticide from wastewater.” J. Environ. Chem. Eng., 9(2), 105121.

Ahmad, N., Samavati, A., Nordin, N. A. H. M., Jaafar, J., Ismail, A. F., & Malek, N. A. N. N., 2020. “Enhanced performance and antibacterial properties of amine-functionalized ZIF-8-decorated GO for ultrafiltration membrane.” Sep. Pur. Technol., 239, 116554.

Ahmadipouya, S., Mousavi, S. A., Shokrgozar, A., & Mousavi, D. V., 2022. “Improving dye removal and antifouling performance of polysulfone nanofiltration membranes by incorporation of UiO-66 metal-organic framework.” J. Environ. Chem. Eng., 10(3), 107535.

Al Amery, N., Abid, H. R., Al-Saadi, S., Wang, S., & Liu, S., 2020. “Facile directions for synthesis, modification and activation of MOFs.” Mater. Today Chem., 17, 100343.

Ali Akbar Razavi, S., & Morsali, A., 2019. “Linker functionalized metal-organic frameworks Coordination Chem. Rev., 399, 213023.

Aljundi, I. H., 2017. “Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles.” Desalination, 420, 12–20.

Angela, S., Bervia Lunardi, V., Kusuma, K., Edi Soetaredjo, F., Nyoo Putro, J., Permatasari Santoso, S., Elisa Angkawijaya, A., Lie, J., Gunarto, C., Kurniawan, A., & Ismadji, S., 2021. “Facile synthesis of hierarchical porous ZIF-8@TiO2 for simultaneous adsorption and photocatalytic decomposition of crystal violet.” Environ. Nanotechnol. Monitor. Manage., 16, 100598.

Ariyanti, D., Wicaksana, F., & Gao, W., 2021. “Submerged Membrane Photo Reactor (SMPR) with Simultaneous Photo Degradation and TiO2 Catalyst Recovery for Efficient Dyes Removal.” ASEAN J. Chem. Eng., 21(2), 225–240.

Bai, Z., Wang, L., Liu, C., Yang, C., Lin, G., Liu, S., Jia, K., & Liu, X., 2021. “Interfacial coordination mediated surface segregation of halloysite nanotubes to construct a high-flux antifouling membrane for oil-water emulsion separation.” J. Membr. Sci., 620, 118828.

Basu, S., & Balakrishnan, M., 2017. “Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams.” Sep. Pur. Technol., 179, 118–125.

Bian, Y., Xiong, N., & Zhu, G., 2018. “Technology for the Remediation of Water Pollution: A Review on the Fabrication of Metal Organic Frameworks.” Processes, 6(8), 122.

Cao, J., Su, Y., Liu, Y., Guan, J., He, M., Zhang, R., & Jiang, Z., 2018. “Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation.” J. Membr. Sci., 566, 268–277.

Cao, J., Yang, Z., Xiong, W., Zhou, Y., Peng, Y., Li, X., Zhou, C., Xu, R., & Zhang, Y., 2018. “One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis.” Chem. Eng. J. 353, 126–137.

Castro-Muñoz, R., González-Melgoza, L. L., & García-Depraect, O., 2021. “Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water.” Chemosphere, 270, 129421.

Chang, E.-E., Liang, C.-H., Huang, C.-P., & Chiang, P.-C., 2012. “A simplified method for elucidating the effect of size exclusion on nanofiltration membranes” Sep. Pur. Technol., 85, 1–7.

Cheang, T., Huang, W., Li, W., Ren, S., Wen, H., Zhou, T., Zhang, Y., & Lin, W., 2022. “Exposed carboxyl functionalized MIL-101 derivatives for rapid and efficient extraction of heavy metals from aqueous solution” Coll. Surf. A: Physicochem. Eng. Aspects, 649, 129517.

Chen, C., Liu, Q., Chen, W., Li, F., Xiao, G., Chen, C., Li, R., & Zhou, J., 2022. “A high absorbent PVDF composite membrane based on β-cyclodextrin and ZIF-8 for rapid removing of heavy metal ions. Sep. Pur. Technol., 292, 120993.

Chen, D., Zhao, J., Zhang, P., & Dai, S., 2019. “Mechanochemical synthesis of metal–organic frameworks.” Polyhedron, 162, 59–64.

Chen, Q.-C., Bang, Y., Li, L., & Deng, H.-Y., 2022. “High flux and antifouling nanofiltration membrane modified by Ag@UiO-66-NH2 and its application for biphenol a removal.” Adv. Polym. Technol., 2022, e4197365.

Cheng, D., Zhao, L., Li, N., Smith, S. J. D., Wu, D., Zhang, J., Ng, D., Wu, C., Martinez, M. R., Batten, M. P., & Xie, Z., 2019. “Aluminum fumarate MOF/PVDF hollow fiber membrane for enhancement of water flux and thermal efficiency in direct contact membrane distillation.” J. Membr. Sci., 588, 117204.

Choe, J., Ji, J., Kim, M., Yu, J., Ri, J., Ri, K., & Kim, H., 2022. “Prepare of sunlight response NH2-MIL-125/PES composites ultrafiltration membrane for flux incrementation and fouling alleviation” J. Water Proc. Eng., 47, 102804.

Cui, J., Liu, T., Zhang, Q., Wang, T., & Hou, X., 2021. “Rapid microwave synthesis of Fe3O4-PVP@ZIF-67 as highly effective peroxymonosulfate catalyst for degradation of bisphenol F and its mechanism analysis.” Chem. Eng. J., 404, 126453.

Cumba, R. M. T., Ligalig, C. B., Tingson, J. M. D., Molina, M. P., Alguno, A. C., Deocaris, C. C., Latayada, F., Primadona, I., & Capangpangan, R. Y., 2022. “Photocatalytic activity of cellulose nanocrystals/zinc oxide nanocomposite against thiazine dye” under UV and Visible Light Irradiation.” ASEAN Journal of Chemical Engineering, 22(1), 168–177.

Dai, R., Wang, X., Tang, C. Y., & Wang, Z., 2020. “Dually Charged MOF-Based Thin-Film Nanocomposite Nanofiltration Membrane for Enhanced Removal of Charged Pharmaceutically Active Compounds.” Environ. Sci. Technol., 54(12), 7619–7628.

Deng, H., Grunder, S., Cordova, K. E., Valente, C., Furukawa, H., Hmadeh, M., Gándara, F., Whalley, A. C., Liu, Z., Asahina, S., Kazumori, H., O’Keeffe, M., Terasaki, O., Stoddart, J. F., & Yaghi, O. M., 2012. “Large-Pore apertures in a series of metal-organic frameworks.” Science, 336(6084), 1018–1023.

Ding, C., Qin, X., Tian, Y., & Cheng, B., 2022. “PES membrane surface modification via layer-by-layer self-assembly of GO@TiO2 for improved photocatalytic performance.” J. Membr. Sci., 659, 120789.

Du, J.-J., Yuan, Y.-P., Sun, J.-X., Peng, F.-M., Jiang, X., Qiu, L.-G., Xie, A.-J., Shen, Y.-H., & Zhu, J.-F., 2011. “New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye.” J. Hazard. Mater., 190(1), 945–951.

Eltaweil, A. S., Elshishini, H. M., Ghatass, Z. F., & Elsubruiti, G. M., 2021. Ultra-high adsorption capacity and selective removal of Congo red over aminated graphene oxide modified Mn-doped UiO-66 MOF. Powder Technology, 379, 407–416.

Esfahani, M. R., Aktij, S. A., Dabaghian, Z., Firouzjaei, M. D., Rahimpour, A., Eke, J., Escobar, I. C., Abolhassani, M., Greenlee, L. F., Esfahani, A. R., Sadmani, A., & Koutahzadeh, N., 2019. “Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications.” Separation and Purification Technology, 213, 465–499.

Fang, S.-Y., Gong, J.-L., Tang, L., Cao, W.-C., Li, J., Tan, Z.-K., Wang, Y.-W., & Wang, W.-B., 2022. “Loosely sandwich-structured membranes decorated with UiO-66-NH2 for efficient antibiotic separation and organic solvent resistance.” ACS Appl. Mater. Interfaces, 14(34), 38990–39003.

Fang, S.-Y., Zhang, P., Gong, J.-L., Tang, L., Zeng, G.-M., Song, B., Cao, W.-C., Li, J., & Ye, J., 2020. “Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation.” Chem. Eng. J., 385, 123400.

Gabriel, C., Gabriel, S., H. Grant, E., H. Grant, E., S. J. Halstead, B., & Michael P. Mingos, D., 1998. “Dielectric parameters relevant to microwave dielectric heating.” Chem. Soc. Rev., 27(3), 213.

Gao, Y., Yan, S., He, Y., Fan, Y., Zhang, L., Ma, J., Hou, R., Chen, L., & Chen, J., 2021. “A photo-Fenton self-cleaning membrane based on NH2-MIL-88B (Fe) and graphene oxide to improve dye removal performance.” J. Membr. Sci., 626, 119192.

Gnanasekaran, G., G, A., & Mok, Y. S., 2021. “A high-flux metal-organic framework membrane (PSF/MIL-100 (Fe)) for the removal of microplastics adsorbing dye contaminants from textile wastewater.” Sep. Pur. Technol., 277, 119655.

Gowriboy, N., Kalaivizhi, R., Ganesh, M. R., & Aswathy, K. A., 2022. “Development of thin film polymer nanocomposite membrane (ZIF-8@PSf/CS) for removal of textile pollutant and evaluating the effect of water samples on human monocytic cell lines (THP-1) using flow cytometer.” J. Cleaner Prod., 377, 134399.

Guo, J., Huang, M., Gao, P., Zhang, Y., Chen, H., Zheng, S., Mu, T., & Luo, X., 2020. “Simultaneous robust removal of tetracycline and tetracycline resistance genes by a novel UiO/TPU/PSF forward osmosis membrane.” Chem. Eng. J., 398, 125604.

Hashimoto, S., Matsukami, H., Ieda, T., & Suzuki, G., 2021. “Comprehensive screening of polybromochlorodibenzo-p-dioxins, dibenzofurans as mixed halogenated compounds in wastewater samples from industrial facilities by GC×GC/ToFMS and post-data processing.” Chemosphere, 276, 130085.

Hu, Z., Kundu, T., Wang, Y., Sun, Y., Zeng, K., & Zhao, D., 2020. “Modulated hydrothermal synthesis of highly stable MOF-808(Hf) for methane storage.” ACS Sustain. Chem. Eng., 8(46), 17042–17053.

Hu, Z., Wang, Y., Farooq, S., & Zhao, D., 2017. “A highly stable metal‐organic framework with optimum aperture size for CO 2 capture.” AIChE J., 63(9), 4103–4114.

Huang, X., Yu, S., Lin, W., Yao, X., Zhang, M., He, Q., Fu, F., Zhu, H., & Chen, J., 2021. “A metal-organic framework MIL-53(Fe) containing sliver ions with antibacterial property.” J. Solid State Chem., 302, 122442.

Huang, X.-X., Qiu, L.-G., Zhang, W., Yuan, Y.-P., Jiang, X., Xie, A.-J., Shen, Y.-H., & Zhu, J.-F., 2012. “Hierarchically mesostructured MIL-101 metal–organic frameworks: Supramolecular template-directed synthesis and accelerated adsorption kinetics for dye removal.” Cryst. Eng. Comm., 14(5), 1613–1617.

Ibrahim, N. A., Wirzal, M. D. H., Nordin, N. A. H., & Abd Halim, N. S., 2018. “Development of polyvinylidene fluoride (PVDF)-ZIF-8 membrane for wastewater treatment.” IOP Conf. Series: Earth Environ. Sci., 140, 012021.

Ji, C., Ren, Y., Yu, H., Hua, M., Lv, L., & Zhang, W., 2022. “Highly efficient and selective Hg(II) removal from water by thiol-functionalized MOF-808: Kinetic and mechanism study.” Chem. Eng. J., 430, 132960.

Johari, N. A., Yusof, N., Lau, W. J., Abdullah, N., Salleh, W. N. W., Jaafar, J., Aziz, F., & Ismail, A. F., 2021. “Polyethersulfone ultrafiltration membrane incorporated with ferric-based metal-organic framework for textile wastewater treatment.” Sep. Pur. Technol., 270, 118819.

Khosravi, M. J., Hosseini, S. M., & Vatanpour, V., 2022. “Performance improvement of PES membrane decorated by Mil-125(Ti)/chitosan nanocomposite for removal of organic pollutants and heavy metal.” Chemosphere, 290, 133335.

Kirchon, A., Feng, L., Drake, H. F., Joseph, E. A., & Zhou, H.-C., 2018. “From fundamentals to applications: A toolbox for robust and multifunctional MOF materials”. Chem. Society Rev., 47(23), 8611–8638.

Kong, R.-M., Zhao, Y., Zheng, Y., & Qu, F., 2017. “Facile synthesis of ZnO/CdS@ZIF-8 core–shell nanocomposites and their applications in photocatalytic degradation of organic dyes.” RSC Advances, 7(50), 31365–31371.

Kusworo, T. D., Budiyono, Kumoro, A. C., & Utomo, D. P., 2022. “Photocatalytic nanohybrid membranes for highly efficient wastewater treatment: A comprehensive review.” J. Environ. Manage., 317, 115357.

Kusworo, T. D., Kumoro, A. C., Utomo, D. P., Kusumah, F. M., & Pratiwi, M. D., 2021. “Performance of the crosslinked pva coated PES-TiO2 nano hybrid membrane for the treatment of pretreated natural rubber wastewater involving sequential adsorption – ozonation processes.” J. Environ. Chem. Eng., 9(2), 104855.

Lakra, R., Balakrishnan, M., & Basu, S., 2021. “Development of cellulose acetate-chitosan-metal organic framework forward osmosis membrane for recovery of water and nutrients from wastewater.” J. Environ. Chem. Eng., 9(5), 105882.

Lammert, M., Wharmby, M. T., Smolders, S., Bueken, B., Lieb, A., Lomachenko, K. A., Vos, D. D., & Stock, N., 2015. “Cerium-based metal organic frameworks with UiO-66 architecture: Synthesis, properties and redox catalytic activity.” Chem. Commun., 51(63), 12578–12581.

Lestari, W. W., Hartono, J., Adreane, M., Nugrahaningtyas, K. D., Purnawan, C., & Rahardjo, S. B., 2016. “Electro-synthetic optimization of host material based on MIL-100(Fe).” Molekul, 11(1), 61–70.

Li, J., Wang, H., Yuan, X., Zhang, J., & Chew, J. W., 2020. “Metal-organic framework membranes for wastewater treatment and water regeneration.” Coord. Chem. Rev., 404, 213116.

Li, M., Luo, J., Lu, J., Shang, W., Mu, J., Sun, F., Dong, Z., & Li, X., 2022. “A novel nanofibrous PAN ultrafiltration membrane embedded with ZIF-8 nanoparticles for effective removal of Congo red, Pb(II), and Cu(II) in industrial wastewater treatment.” Chemosphere, 304, 135285.

Li, N., Chen, G., Zhao, J., Yan, B., Cheng, Z., Meng, L., & Chen, V., 2019. “Self-cleaning PDA/ZIF-67@PP membrane for dye wastewater remediation with peroxymonosulfate and visible light activation.” J. Membr, Sci., 591, 117341.

Li, T., Zhang, W., Zhai, S., Gao, G., Ding, J., Zhang, W., Liu, Y., Zhao, X., Pan, B., & Lv, L., 2018. “Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane.” Water Res., 143, 87–98.

Li, X., Yu, Z., Shao, L., Feng, X., Zeng, H., Liu, Y., Long, R., & Zhu, X., 2021. “Self-cleaning photocatalytic PVDF membrane loaded with NH2-MIL-88B/CDs and Graphene oxide for MB separation and degradation.” Optical Mater., 119, 111368.

Lin, Q., Zeng, G., Yan, G., Luo, J., Cheng, X., Zhao, Z., & Li, H., 2022. “Self-cleaning photocatalytic MXene composite membrane for synergistically enhanced water treatment: Oil/water separation and dyes removal.” Chem. Eng. J., 427, 131668.

Lin, Y., Wu, H.-C., Yasui, T., Yoshioka, T., & Matsuyama, H., 2019. “Development of an HKUST-1 nanofiller-templated poly(ether sulfone) mixed matrix membrane for a highly efficient ultrafiltration process.” ACS Appl. Mater. Interfaces, 11(20), 18782–18796.

Liu, D., Yin, J., Tang, H., Wang, H., Liu, S., Huang, T., Fang, S., Zhu, K., & Xie, Z., 2021. “Fabrication of ZIF-67@PVDF ultrafiltration membrane with improved antifouling and separation performance for dye wastewater treatment via sulfate radical enhancement.” Sep. Pur. Technol., 279, 119755.

Liu, F., Xiong, W., Feng, X., Shi, L., Chen, D., & Zhang, Y., 2019. “A novel monolith ZnS-ZIF-8 adsorption material for ultraeffective Hg (II) capture from wastewater.” J. Hazard. Mater., 367, 381–389.

Liu, J., Shen, L., Lin, H., Huang, Z., Hong, H., & Chen, C., 2022. “Preparation of Ni@UiO-66 incorporated polyethersulfone (PES) membrane by magnetic field assisted strategy to improve permeability and photocatalytic self-cleaning ability.” J. Colloid Interface Sci., 618, 483–495.

Liu, X., Shan, Y., Zhang, S., Kong, Q., & Pang, H., 2023. “Application of metal organic framework in wastewater treatment.” Green Energy & Environ. 8(3), 698-721.

Liu, Y., Gan, D., Chen, M., Ma, L., Yang, B., Li, L., Zhu, M., & Tu, W., 2020. “Bioinspired dopamine modulating graphene oxide nanocomposite membrane interposed by super-hydrophilic UiO-66 with enhanced water permeability.” Sep. Pur. Technol., 253, 117552.

Liu, Y., Liu, R., Chen, W., Chen, M., Tu, W., Zhu, M., He, W., Huang, Z., & Liu, S., 2022. “A high-flux polydopamine/reduced graphene oxide/MOF-5 composite membrane via a mussel-inspired method for dye wastewater purification.” J. Mater. Sci. 57(31), 14799–14818.

Low, Z.-X., Razmjou, A., Wang, K., Gray, S., Duke, M., & Wang, H., 2014. “Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane.” J. Membr. Sci., 460, 9–17.

Lu, W., Duan, C., Liu, C., Zhang, Y., Meng, X., Dai, L., Wang, W., Yu, H., & Ni, Y., 2020. “A self-cleaning and photocatalytic cellulose-fiber- supported “Ag@AgCl@MOF- cloth’’ membrane for complex wastewater remediation.” Carbohydrate Polym., 247, 116691.

Millange, F., & Walton, R. I., 2018. “MIL-53 and its isoreticular analogues: a review of the chemistry and structure of a prototypical flexible metal-organic framework.” Israel J. Chem., 58(9–10), 1019–1035.

Min, X., Wu, X., Shao, P., Ren, Z., Ding, L., & Luo, X., 2019. “Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture: Unusual doping of lanthanum by the reduction of coordination number.” Chem. Eng. J., 358, 321–330.

Modi, A., Jiang, Z., & Kasher, R., 2022. “Hydrostable ZIF-8 layer on polyacrylonitrile membrane for efficient treatment of oilfield produced water.” Chem. Eng. J., 434, 133513.

Moh, P. Y., Cubillas, P., Anderson, M. W., & Attfield, M. P., 2011. “Revelation of the molecular assembly of the nanoporous metal organic framework ZIF-8.” J. American Chem. Society, 133(34), 13304–13307.

Molavi, H., Neshastehgar, M., Shojaei, A., & Ghashghaeinejad, H., 2020. “Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite.” Chemosphere, 247, 125882.

Mu, T., Zhang, Y., Shi, W., Chen, G., Liu, Y., & Huang, M., 2021. “A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification.” Chemosphere, 269, 128686.

Ojha, A., Tiwary, D., Oraon, R., & Singh, P., 2021. “Degradations of endocrine-disrupting chemicals and pharmaceutical compounds in wastewater with carbon-based nanomaterials: A critical review.” Environ. Sci. Pollution Res., 28(24), 30573–30594.

Pan, J., Wang, L., Shi, Y., Li, L., Xu, Z., Sun, H., Guo, F., & Shi, W., 2022. “Construction of nanodiamonds/UiO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics.” Sep. Pur. Technol., 284, 120270.

Panis, C., Candiotto, L. Z. P., Gaboardi, S. C., Gurzenda, S., Cruz, J., Castro, M., & Lemos, B., 2022. “Widespread pesticide contamination of drinking water and impact on cancer risk in Brazil.” Environ. Intern., 165, 107321.

Pei, W., Zhang, J., Tong, H., Ding, M., Shi, F., Wang, R., Huo, Y., & Li, H., 2021. “Removal and reutilization of metal ions on ZIF-67/GO membrane via synergistic photocatalytic-photothermal route.” Appl. Cat. B: Environ., 282, 119575.

Penboon, L., Khrueakham, A., & Sairiam, S., 2019. “TiO2 coated on PVDF membrane for dye wastewater treatment by a photocatalytic membrane.” Water Sci. Technol., 79(5), 958–966.

Pichon, A., Lazuen-Garay, A., & James, S. L., 2006. “Solvent-free synthesis of a microporous metal–organic framework.” Cryst. Eng. Comm., 8(3), 211.

Qasim, M., Darwish, N. N., Mhiyo, S., Darwish, N. A., & Hilal, N., 2018. “The use of ultrasound to mitigate membrane fouling in desalination and water treatment.” Desalination, 443, 143–164.

Qian, Y., Zhang, F., & Pang, H., 2021. “A Review of MOFs and their composites‐based photocatalysts: synthesis and applications.” Adv. Functional Mater., 31(37), 2104231.

Rabenau, A., 1985. “The Role of hydrothermal synthesis in preparative chemistry.” Angewandte Chemie International Edition in English, 24(12), 1026–1040.

Ratman, I., Kusworo, T. D., Utomo, D. P., Azizah, D. A., & Ayodyasena, W. A., 2020. “Petroleum refinery wastewater treatment using three steps modified nanohybrid membrane coupled with ozonation as integrated pre-treatment.” J. Environ. Chem. Eng., 8(4), 103978.

Ren, Y., Li, T., Zhang, W., Wang, S., Shi, M., Shan, C., Zhang, W., Guan, X., Lv, L., Hua, M., & Pan, B., 2019. “MIL-PVDF blend ultrafiltration membranes with ultrahigh MOF loading for simultaneous adsorption and catalytic oxidation of methylene blue.” J. Hazard. Mater., 365, 312–321.

Rocío-Bautista, P., Taima-Mancera, I., Pasán, J., & Pino, V., 2019. “Metal-organic frameworks in green analytical chemistry.” Separations, 6(3), 33.

Safaei, M., Foroughi, M. M., Ebrahimpoor, N., Jahani, S., Omidi, A., & Khatami, M., 2019. “A review on metal-organic frameworks: Synthesis and applications.” TrAC Trends Anal. Chem., 118, 401–425.

Safy, M. E. A., Amin, M., Haikal, R. R., Elshazly, B., Wang, J., Wang, Y., Wöll, C., & Alkordi, M. H., 2020. “Probing the water stability limits and degradation pathways of metal–organic frameworks.” Chem. – A European J., 26(31), 7109–7117.

Santoso, E., Ediati, R., Istiqomah, Z., Sulistiono, D. O., Nugraha, R. E., Kusumawati, Y., Bahruji, H., & Prasetyoko, D., 2021. “Facile synthesis of ZIF-8 nanoparticles using polar acetic acid solvent for enhanced adsorption of methylene blue.” Microporous Mesoporous Mater., 310, 110620.

Savun-Hekimoğlu, B., 2020. “A review on sonochemistry and its environmental applications.” Acoustics, 2(4), 766–775.

Sharanyakanth, P. S., & Radhakrishnan, M., 2020. “Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review.” Trends Food Sci. Technol., 104, 102–116.

Shen, S., Shen, Y., Wu, Y., Li, H., Sun, C., Zhang, G., & Guo, Y., 2022. “Surface modification of PVDF membrane via deposition-grafting of UiO-66-NH2 and their application in oily water separations.” Chem. Eng. Sci., 260, 117934.

Shukrullah, S., Ayyaz, M., Naz, M. Y., Ibrahim, K. A., AbdEl-Salam, N. M., & Mohamed, H. F., 2021. “Post-synthesis plasma processing and activation of TiO2 photocatalyst for the removal of synthetic dyes from industrial wastewater.” Appl. Physics A, 127(5), 307.

Sun, M., Yan, L., Zhang, L., Song, L., Guo, J., & Zhang, H., 2019. “New insights into the rapid formation of initial membrane fouling after in-situ cleaning in a membrane bioreactor.” Proc. Biochem., 78, 108–113.

Taheri, M., Enge, T. G., & Tsuzuki, T., 2020. “Water stability of cobalt doped ZIF-8: A quantitative study using optical analyses.” Mater. Today Chem., 16, 100231.

Tan, K. L., & Foo, K. Y., 2021. “Preparation of MIL-100 via a novel water-based heatless synthesis technique for the effective remediation of phenoxyacetic acid-based pesticide.” J. Environ. Chem. Eng., 9(1), 104923.

Tan, Y., Sun, Z., Meng, H., Han, Y., Wu, J., Xu, J., Xu, Y., & Zhang, X., 2019. “A new MOFs/polymer hybrid membrane: MIL-68(Al)/PVDF, fabrication and application in high-efficient removal of p-nitrophenol and methylene blue.” Sep. Pur. Technol., 215, 217–226.

Wagner, M., Andrew Lin, K.-Y., Oh, W.-D., & Lisak, G., 2021. “Metal-organic frameworks for pesticidal persistent organic pollutants detection and adsorption – A mini review.” J. Hazard. Mater., 413, 125325.

Wang, C., Xing, W., Wu, Y., Li, Y., Yan, Y., & Zhu, J., 2022. “In-situ synthesis of CNT/UiO-66-NH2-based molecularly imprinted nanocomposite membranes for selective recognition and separation of sulfamethoxazole: A synergistic promotion system.” Surf. Interfaces, 31, 101986.

Wang, H., Yu, T., Li, Y., Liu, L., Gao, C., & Ding, J., 2022. “Self-sustained bioelectrical reduction system assisted iron–manganese doped metal-organic framework membrane for the treatment of electroplating wastewater.” J. Cleaner Prod., 331, 129972.

Wang, N., Liu, T., Shen, H., Ji, S., Li, J.-R., & Zhang, R., 2016. “Ceramic tubular MOF hybrid membrane fabricated through in situ layer-by-layer self-assembly for nanofiltration.” AIChE J., 62(2), 538–546.

Wang, T., Chen, S., Wang, T., Wu, L., & Wang, Y., 2022. “PES mixed-matrix ultrafiltration membranes incorporating ZIF-8 and poly(ionic liquid) by microemulsion synthetic with flux and antifouling properties.” Appl. Surf. Sci., 576, 151815.

Wang, X., Zhang, H., Lin, H., Gupta, S., Wang, C., Tao, Z., Fu, H., Wang, T., Zheng, J., Wu, G., & Li, X., 2016. “Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid.” Nano Energy, 25, 110–119.

Wang, Y., Long, J., Xu, W., Luo, H., Liu, J., Zhang, Y., Li, J., & Luo, X., 2021. “Removal of uranium(VI) from simulated wastewater by a novel porous membrane based on crosslinked chitosan, UiO-66-NH2 and polyvinyl alcohol.” J. Radioanal. Nuclear Chem., 328(1), 397–410.

Wibowo, A., Marsudi, M. A., Pramono, E., Belva, J., Parmita, A. W. Y. P., Patah, A., Eddy, D. R., Aimon, A. H., & Ramelan, A., 2021. “Recent improvement strategies on metal-organic frameworks as adsorbent, catalyst, and membrane for wastewater treatment.” Molecules, 26(17), 5261.

Wu, C.-J., Valerie Maggay, I., Chiang, C.-H., Chen, W., Chang, Y., Hu, C., & Venault, A., 2023. “Removal of tetracycline by a photocatalytic membrane reactor with MIL-53(Fe)/PVDF mixed-matrix membrane.” Chem. Eng. J., 451, 138990.

Wu, M., Guo, X., Zhao, F., & Zeng, B., 2017. “A Poly(ethylenglycol) functionalized ZIF-8 membrane prepared by coordination-based post-synthetic strategy for the enhanced adsorption of phenolic endocrine disruptors from water.” Scientific Reports, 7(1), 8912.

Xiao, F., Hu, X., Chen, Y., & Zhang, Y., 2019. “Porous Zr-Based metal-organic frameworks (Zr-MOFs)-incorporated thin-film nanocomposite membrane toward enhanced desalination performance.” ACS Appl. Mater. Interfaces, 11(50), 47390–47403.

Xie, A., Cui, J., Yang, J., Chen, Y., Lang, J., Li, C., Yan, Y., & Dai, J., 2020. “Photo-Fenton self-cleaning PVDF/NH2-MIL-88B(Fe) membranes towards highly-efficient oil/water emulsion separation.” J. Membr. Sci., 595, 117499.

Xu, Y., Gao, X., Wang, Q., Wang, X., Ji, Z., & Gao, C., 2016. “Highly stable MIL-101(Cr) doped water permeable thin film nanocomposite membranes for water treatment.” RSC Adv., 6(86), 82669–82675.

Yadav, A., Sharma, P., Panda, A. B., & Shahi, V. K., 2021. “Photocatalytic TiO2 incorporated PVDF-co-HFP UV-cleaning mixed matrix membranes for effective removal of dyes from synthetic wastewater system via membrane distillation.” J. Environ. Chem. Eng., 9(5), 105904.

Yang, J.-M., Ying, R.-J., Han, C.-X., Hu, Q.-T., Xu, H.-M., Li, J.-H., Wang, Q., & Zhang, W., 2018. “Adsorptive removal of organic dyes from aqueous solution by a Zr-based metal–organic framework: Effects of Ce(III) doping.” Dalton Transactions, 47(11), 3913–3920.

Yasir, M. W., Siddique, M. B. A., Shabbir, Z., Ullah, H., Riaz, L., Nisa, W.-U.-, Shafeeq-ur-rahman, & Shah, A. A., 2021. “Biotreatment potential of co-contaminants hexavalent chromium and polychlorinated biphenyls in industrial wastewater: Individual and simultaneous prospects.” Sci. Total Environ., 779, 146345.

Ye, R., Ni, M., Xu, Y., Chen, H., & Li, S., 2018. “Synthesis of Zn-based metal–organic frameworks in ionic liquid microemulsions at room temperature.” RSC Advances, 8(46), 26237–26242.

Yu, F., Cen, L., Lei, C., Zhu, F., Zhou, L., Zhu, H., & Yu, B., 2023. “Fabrication of recyclable UiO-66-NH2/PVDF hybrid fibrous membrane for Cr(VI) removal in wastewater.” J. Industrial Eng. Chem., 123, 104–115.

Zarak, M., Atif, S., Meng, X., & Tian, M., 2022. “Enhancing interfacial interaction of PDMS matrix with ZIF-8 via embedding TiO2@ZIF-8 composites for phenol extraction in aqueous-aqueous membrane extractive process.” Chem. Eng. Res. Des., 183, 546–556.

Zhang, D., Zhang, J., Pan, M., Wang, Y., & Sun, T., 2021. “Necklace-like C-ZIF-8@MWCNTs fabricated by electrochemical deposition towards enhanced supercapacitor.” J. Alloys Comp., 853, 157368.

Zhang, M., Liao, B., Zhou, X., He, Y., Hong, H., Lin, H., & Chen, J., 2015. “Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor.” Biores. Technol., 175, 59–67.

Zhang, P., Li, H., Veith, G. M., & Dai, S., 2015. ”Soluble porous coordination polymers by mechanochemistry: from metal-containing films/membranes to active catalysts for aerobic oxidation.” Adv. Mater., 27(2), 234–239.

Zhang, S., Liu, Y., Li, D., Wang, Q., & Ran, F., 2020. “Water-soluble MOF nanoparticles modified polyethersulfone membrane for improving flux and molecular retention.” Appl. Surf. Sci., 505, 144553.

Zhao, F., Zhang, Y., Chu, H., Jiang, S., Yu, Z., Wang, M., Zhou, X., & Zhao, J., 2018. “A uniform shearing vibration membrane system reducing membrane fouling in algae harvesting.” J. Cleaner Prod., 196, 1026–1033.

Zhou, S., Gao, J., Zhu, J., Peng, D., Zhang, Y., & Zhang, Y., 2020. “Self-cleaning, antibacterial mixed matrix membranes enabled by photocatalyst Ti-MOFs for efficient dye removal.” J. Membr. Sci., 610, 118219.

Zhu, X., Yu, Z., Liu, Y., Li, X., Long, R., Wang, P., & Wang, J., 2021. “NH2-MIL-125@PAA composite membrane for separation of oil/water emulsions and dyes.” Colloids Surf., A, 630, 127542



DOI: https://doi.org/10.22146/ajche.83845

Article Metrics

Abstract views : 1656 | views : 947

Refbacks

  • There are currently no refbacks.


ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.